STORMWATER MANAGEMENT REPORT

Proposed Lidl Grocery Store – MONROE TOWNSHIP,

GLOUCESTER COUNTY, NEW JERSEY

1020 NJ State Highway Route 42

Block 1101: Lot 11.01

Prepared for:

LIDL US OPERATIONS, LLC

Prepared by:

A. A. Caponigro NJ LICENCE NO. 24GE05151900

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ

Table of Contents

١.	EXECUT	IVE SUMMARY	2
2.	HYDROL	OGY REPORT	4
	2.1 - Back	kground	4
	2.1.1	Project Description	4
	2.1.2	Objectives	4
	2.1.3	Stormwater Modeling	4
	2.2 - Exist	ting Conditions	5
	2.2.1	Overview	5
	2.3 - Post	-Developed Conditions	6
	2.3.1	Overview	6
	2.3.2	SWM Approach	6
	2.3.3	Water Quality	6
	2.3.4	Peak Discharge Control	7
	2.3.5	Groundwater Recharge	7
	2.3.6	Stormwater Conveyance	8
3.	EXHIBITS	5	9
	EXHIBIT	1 - Existing Condition Drainage map	10
	EXHIBIT :	2 – Proposed Condition Drainage Map	11
ŀ.	APPEND	ICES	12
	APPENDI	IX A – Soil Type	13
	APPENDI	IX B - Hydrocad Analysis - Existing	14
	APPENDI	IX C - Hydrocad Analysis – Proposed	15
	APPENDI	X D – Groundwater Recharge Spreadsheet	16
	APPENIDI	IX F – Proposed Stormwater Conveyance Calculations	17

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ

1. EXECUTIVE SUMMARY

This report outlines the proposed Stormwater Management improvements (SWM) to be constructed for the proposed Lidl Grocery Store in Monroe Township, New Jersey. The proposed SWM system was designed in accordance with Monroe Township's Code of Ordinances Chapter 175-140 – Stormwater Management as well as New Jersey Administrative Code, Section 7:8 ("NJAC"). The proposed storm system discharges into the modified stormwater basins. The existing drainage pattern intent will be maintained in the proposed condition to the extent practicable to meet the NJAC requirements for quantity control.

The total proposed stormwater management analysis area accounts for an area of 17.88 acres of which only 5.55 acres are disturbed. Existing and Proposed Condition Drainage Maps are provided as **Exhibit 1** and **Exhibit 2**, respectively.

NJAC 7:8 requires the peak post-development stormwater runoff rates from the project site for the 2-, 10-, and 100-year storms are 50%, 75%, and 80%, respectively, of the site's peak pre-development stormwater runoff rates for the areas to be developed for the same storms. The proposed development provides additional storage volume by expanding the existing stormwater basins and uses a modified outlet control structure to meet the SWM ordinance requirement for quantity control.

The summary of flows is shown in Table 1 below for the 2, 10, and 100-year storm events. The peak discharge reduction required is calculated based on the pre-development runoff rate for the disturbed area only and not the total area of analysis. The table demonstrates that the post-developed condition will achieve the required flows, thus meeting the stormwater requirements of NJAC and Chapter 175-140 D. (2) (d) 3 of the Monroe Township Code of Ordinances. A detailed summary of flows for the point of investigation can be found in section 2.3.4 – Discharge Control.

Table 1: Summary of Flows

Design Year Storm	Total Q _{Pre-Dev} (ft ³ /s)	LOD Q _{Pre-Dev} (ft ³ /s)	Required Rate Reduction (%)	Required Rate Reduction (ft ³ /s)	Total Allowable Q _{Post-Dev} (ft ³ /s)	Design Total Q _{Post-Dev} (ft ³ /s)	Post ≤ Total Allowable?
2-year	1.04	0.49	50	0.25	0.79	0.64	Yes
10-year	2.33	2.98	25	0.75	1.58	1.56	Yes
100-year	12.16	11.28	20	2.26	9.90	9.17	Yes

The proposed development utilizes an infiltration basin to treat stormwater runoff and therefore satisfies the water quality control per Chapter 175-140 D. (5) (b) of the Monroe Township Code of Ordinances to reduce total suspended solids load in the stormwater runoff from the post-development site by 80 percent. The infiltration basin is designed in accordance with the New Jersey BMP Manual Chapter 9.5 – Infiltration Basins.

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ

The proposed development and its stormwater management measures maintain 100 percent of the of the average annual preconstruction groundwater recharge volume for the site, and is compliant with groundwater recharge per Chapter 175-140 D. 1(3) (a) of the Monroe Township Code of Ordinances.

The project proposes underground stormwater conveyance system on the site. The proposed system will discharge into the stormwater basins on site. The proposed stormwater conveyance system was designed in accordance with Chapter 175-140 K. (5) of the Monroe Township Code of Ordinances and is sized to convey the 25-year storm event without overtopping the structures.

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ

2. HYDROLOGY REPORT

2.1 - BACKGROUND

2.1.1 Project Description

The proposed project involves the construction of a grocery store with associated parking in Monroe Township, New Jersey. The stormwater management system is designed to comply with the New Jersey Administrative Code ("NJAC"), Section 7:8 and the Monroe Township's Code of Ordinances Chapter 175-140 – Stormwater Management. The proposed development's stormwater runoff will be collected with a catch basin network to a proposed underground conveyance system. The proposed conveyance system will discharge at two locations into one of two stormwater basins located in the southern portion of the site along Lake Avenue. The existing stormwater basins will be modified to control runoff generated from the proposed development. The proposed development will maintain the existing drainage pattern intent to the ultimate discharge point at the southwest corner of the site.

2.1.2 Objectives

The purpose of the following study is to evaluate the pre- and post-developed hydrologic and hydraulic conditions of the proposed development in order to determine appropriate site design measures or detention requirements for stormwater runoff. The NJAC requires that the peak post-development stormwater runoff rates from the project site for the 2-, 10-, and 100-year storms are 50%, 75%, and 80%, respectively, of the site's peak pre-development stormwater runoff rates for the areas to be developed for the same storms.

With regard to water quality, the code requires that stormwater management measures shall be designed to reduce the total suspended solids (TSS) load in the stormwater runoff from the post-development site by 80%.

2.1.3 Stormwater Modeling

To evaluate the impact of the proposed improvements on the stormwater runoff from the site, a procedure based upon the USDA Soil Conservation Service (SCS), TR-20 Method was chosen. Site area was divided into sub-watersheds using requirements set forth in the NJDEP 2004 Storm water Management Regulations (including updated revisions). The SCS methods developed in TR-20 model the drainage area's response to rainfall in the form of an excess rainfall (runoff) hydrograph. A drainage shed's response is dependent upon the individual parameters which affect runoff. These parameters include:

- 1. Storm rainfall amount
- 2. Watershed size and shape
- 3. Hydrologic soils group
- 4. Land use and treatment classification
- 5. Time of concentration.

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ

The time of concentrations (Tc) for the analyzed area were based on SCS TR-55 Methodology. The minimum Tc of 6 minutes was used for directly connected impervious areas in the calculations when applicable. For the Site Stormwater Management analysis, HydroCAD v10.0 computer program developed by HydroCAD Software Solutions LLC was used. The program is modeled after the SCS, USDA TR-20 Program. The design storm depth is determined from rainfall maps, based on the return period being modeled. Combined with the rainfall distribution, this specifies the cumulative rainfall depth at all times during the storm. For this study a Type III, 24-hour rainfall distribution was used for the storm durations for the 2-, 10-, and 100-year storm events. Cumulative rainfall depth obtained from the National Oceanic and Atmospheric Administration (NOAA) for the project site are presented in Table 2 and included in Appendix A.

Table 2: Rainfall Amounts for Monroe Township

Design Year Storm	24-Hour Rainfall Accumulation (inches)
2-year	3.31
10-year	5.11
100-year	8.69

2.2 - EXISTING CONDITIONS

2.2.1 Overview

The existing ±6.21-acre property is mostly undeveloped area with an existing access road. The existing development consists mostly of wooded open space. Two existing stormwater basins are located in the southern portion of the site along Lake Avenue.

The site is delineated into three existing drainage areas, which ultimately converge in the existing storm conveyance system at the intersection of Black Horse Pike and Lake Avenue in the southwest corner of the site. All cover types were considered to be in "good" condition, and all runoff curve number/coefficient data was obtained via the NRCS TR-55 manual or directly from NJAC. Drainage Area 1 consists of all areas that drain via overland surface flow to the existing eastern stormwater basin (Basin 1). Included in this drainage area is approximately 6 acres of offsite drainage from the adjacent properties to the north, which drain to the Herbert Boulevard right-of-way and eventually flows on to the subject property site. The drainage divide between Drainage Area 1 and Drainage Area 2 is primarily the existing eastern curb of the access road onsite. Drainage Area 2 consists of all areas that drain via overland surface flow and storm conveyance systems to the western stormwater basin (Basin 2). Included in this drainage area is approximately 3.8 acres of offsite drainage from the adjacent properties to the north, which drain to an existing storm conveyance system into Basin 2. Basin 1 discharges via an outlet control structure to Basin 1. Drainage Area 3 consists of portions of the subject property that drain directly into the right-of-way. The existing drainage conditions can be seen on the *Existing Conditions*

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ

Drainage Map found as **Exhibit 1** of this report. The point of analysis for the present study is considered the existing storm inlet at the southwest corner of the site located at the intersection of Black Horse Pike and Lake Avenue.

Additional information regarding the existing stormwater basins were obtained from the Township with an Open Public Records Act (OPRA) Request. The drainage report provided was not complete, however the existing drainage area maps confirm there is significant amounts of offsite drainage to the basins. The documents provided indicate there were multiple phases of development proposed for Lake Plaza, including a third detention basin. In the drainage report provided, only two basins were proposed and analyzed. The drainage report analyzed the buildout of the bank property and an approximately 7,000 square foot building with all required parking adjacent to the western basin. The stormwater design proposed post-development peak runoff rates for the 2-, 10-, and 100-year storm events be 50, 75, and 80 percent, respectively, of the preconstruction peak runoff rates as well as provide the required groundwater recharge.

2.3 - POST-DEVELOPED CONDITIONS

2.3.1 Overview

This report analyzes approximately 17.88 acres of total area with approximately 5.55 acres of disturbance. The proposed development will maintain the existing condition drainage pattern intent to the point of analysis. The proposed roof drainage will be collected and discharged into Basin 1. The majority of the proposed parking lot will be collected via a storm conveyance system and discharged into Basin 2. All offsite drainage patterns will be maintained and conveyed to the same basin as in the existing conditions. Runoff to the right-of-way will ultimately discharge to the point of analysis.

2.3.2 SWM Approach

The approach taken in designing the proposed conditions was based on topographical and geographical constraints, as well as existing stormwater management and conveyance system. The approach takes into consideration maintaining the existing drainage patterns to the extent practicable. To meet the stormwater management requirements, the existing systems in place will be modified for the proposed development. The proposed development's runoff will be collected in a storm conveyance system and discharged into the existing basins. The existing basins will be expanded to account for the additional runoff volume. Basin 2 will be converted into an infiltration basin for stormwater quality treatment. The Basin 2 outlet control structure will be modified, but it will maintain its discharge into the existing storm conveyance system in Lake Avenue.

2.3.3 Water Quality

Per Chapter 175-140 D. (5) (b) of the Monroe Township Code of Ordinances, stormwater management measures shall be designed to reduce the total suspended solids (TSS) load in the stormwater runoff from the post-development site by 80 percent. The proposed development will convert Basin 2 into an infiltration basin to satisfy the water quality requirement. An infiltration basin provides 80 percent TSS removal. The infiltration is designed in accordance with the New Jersey

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ

BMP Manual Chapter 9.5 – Infiltration Basins. All runoff from proposed impervious surfaces will be collected and discharged into Basin 1 or Basin 2. Basin 1 will maintain its discharge into Basin 1. Ultimately, all impervious area runoff will pass through Basin 1 to be treated.

2.3.4 Peak Discharge Control

To satisfy Chapter 175-140 D. (2) (d) 3 of the Monroe Township Code of Ordinances, it shall be demonstrated through hydrologic and hydraulic analysis that for stormwater leaving the site, the peak post-development stormwater runoff rates for the 2-, 10- and 100-year storm events are 50, 75, 80 percent, respectively, of the site's peak pre-development stormwater runoff rates for the same storms. To the achieve water quantity requirement, the existing stormwater basins will be expanded and the outlet control structure for Basin 2 will be modified.

The project evaluated the pre-development peak discharges to the point of analysis for the full contributing drainage area of 17.88 acres. The existing runoff rates within the proposed limits of analysis were also calculated. The rate reductions for the 2-, 10-, and 100-year storm events of 50, 25, and 20 percent were calculated based on the disturbed area runoff rates only. These reductions were then applied to the pre-development peak discharges at the point of analysis. The hydrologic and hydraulic analysis for the post-development conditions demonstrates that the peak post-development stormwater runoff rates for the 2-, 10- and 100-year storm events are 50, 75, 80 percent, respectively, of the site's peak pre-development stormwater runoff rates for the same storms. The peak discharges for the point of analysis are summarized in Table 3 below. The results of the existing and proposed analysis can be found in **Appendix B** and **C**, respectively.

Table 3: Summary of Flows

Design Year Storm	Total Q _{Pre-Dev} (ft ³ /s)	LOD Q _{Pre-Dev} (ft ³ /s)	Required Rate Reduction (%)	Required Rate Reduction (ft ³ /s)	Total Allowable Q _{Post-Dev} (ft ³ /s)	Design Total Q _{Post-Dev} (ft ³ /s)	Post ≤ Total Allowable?
2-year	1.04	0.49	50	0.25	0.79	0.64	Yes
10-year	2.33	2.98	25	0.75	1.58	1.56	Yes
100-year	12.16	11.28	20	2.26	9.90	9.17	Yes

2.3.5 Groundwater Recharge

To satisfy Chapter 175-140 D. 1(3) (a) of the Monroe Township Code of Ordinances, it shall be demonstrated through hydrologic and hydraulic analysis that the site and its stormwater management measures maintain 100 percent of the average annual preconstruction groundwater recharge volume for the site. The Groundwater Recharge Spreadsheet can be found in **Appendix D** of this report. By providing infiltration with the infiltration basin, the proposed development satisfies this requirement.

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ

2.3.6 Stormwater Conveyance

The project proposes underground stormwater conveyance system on the site. The proposed system will discharge into the stormwater basins on site. The proposed stormwater conveyance system was designed in accordance with Chapter 175-140 K. (5) of the Monroe Township Code of Ordinances. For flood protection, the proposed storm drain network is sized to convey the 25-year storm event without overtopping the structures. Calculations for the proposed conveyance system can be found in **Appendix E** of this report.

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ

3. EXHIBITS

NOAA Atlas 14, Volume 2, Version 3 Location name: Williamstown, New Jersey, USA* Latitude: 39.6995°, Longitude: -75.0013° Elevation: 142.88 ft**

source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

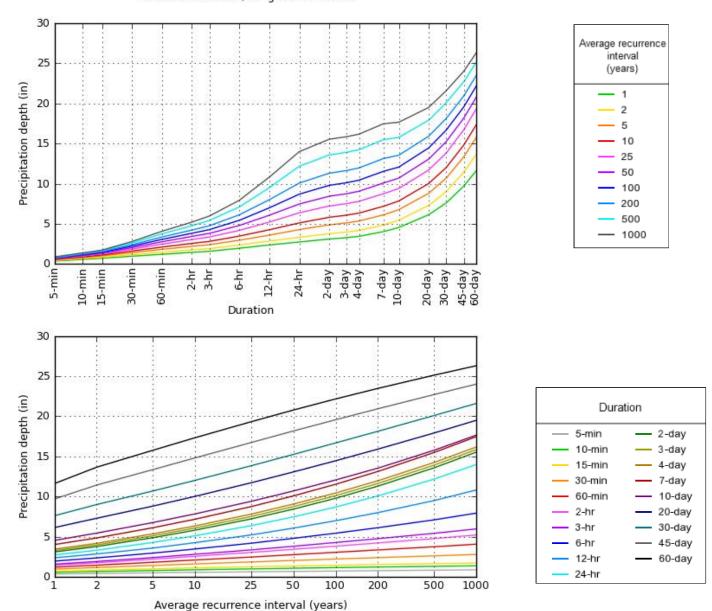
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PD	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration				Avera	ge recurren	ce interval (
	1	2	5	10	25	50	100	200	500	1000	
5-min	0.351 (0.318-0.386)	0.417 (0.378-0.458)	0.490 (0.444-0.539)	0.549 (0.496-0.604)	0.618 (0.556-0.680)	0.670 (0.600-0.739)	0.721 (0.643-0.797)	0.767 (0.679-0.852)	0.824 (0.721-0.921)	0.870 (0.754-0.980	
10-min	0.560 (0.508-0.616)	0.666 (0.605-0.733)	0.785 (0.711-0.863)	0.877 (0.793-0.966)	0.985 (0.886-1.08)	1.07 (0.956-1.18)	1.15 (1.02-1.27)	1.22 (1.08-1.35)	1.30 (1.14-1.46)	1.37 (1.19-1.54)	
15-min	0.700 (0.635-0.770)	0.838 (0.760-0.921)	0.993 (0.899-1.09)	1.11 (1.00-1.22)	1.25 (1.12-1.37)	1.35 (1.21-1.49)	1.45 (1.29-1.60)	1.53 (1.36-1.70)	1.64 (1.44-1.83)	1.72 (1.49-1.94)	
30-min	0.960 (0.870-1.06)	1.16 (1.05-1.27)	1.41 (1.28-1.55)	1.61 (1.45-1.77)	1.85 (1.66-2.04)	2.03 (1.82-2.24)	2.22 (1.98-2.45)	2.39 (2.11-2.65)	2.61 (2.29-2.92)	2.79 (2.42-3.14)	
60-min	1.20 (1.09-1.32)	1.45 (1.32-1.60)	1.81 (1.64-1.99)	2.09 (1.89-2.31)	2.46 (2.22-2.71)	2.76 (2.47-3.04)	3.05 (2.72-3.38)	3.35 (2.97-3.72)	3.74 (3.28-4.19)	4.07 (3.53-4.58)	
2-hr	1.44 (1.29-1.60)	1.75 (1.57-1.95)	2.19 (1.97-2.44)	2.56 (2.29-2.85)	3.04 (2.70-3.39)	3.43 (3.03-3.82)	3.82 (3.36-4.28)	4.22 (3.69-4.75)	4.76 (4.11-5.40)	5.21 (4.44-5.94)	
3-hr	1.57 (1.42-1.75)	1.91 (1.72-2.12)	2.40 (2.15-2.67)	2.81 (2.51-3.13)	3.35 (2.98-3.74)	3.81 (3.36-4.24)	4.27 (3.74-4.78)	4.75 (4.12-5.34)	5.42 (4.62-6.13)	5.97 (5.03-6.78)	
6-hr	1.95 (1.76-2.19)	2.36 (2.12-2.64)	2.95 (2.65-3.30)	3.47 (3.10-3.88)	4.18 (3.71-4.68)	4.79 (4.21-5.37)	5.43 (4.73-6.10)	6.12 (5.26-6.90)	7.10 (5.99-8.06)	7.94 (6.60-9.07)	
12-hr	2.36 (2.13-2.65)	2.85 (2.56-3.20)	3.58 (3.22-4.02)	4.25 (3.81-4.76)	5.22 (4.62-5.84)	6.07 (5.32-6.80)	6.99 (6.04-7.86)	8.00 (6.81-9.04)	9.49 (7.89-10.8)	10.8 (8.81-12.4)	
24-hr	2.73 (2.48-3.01)	3.31 (3.02-3.65)	4.28 (3.89-4.72)	5.11 (4.63-5.63)	6.37 (5.72-6.99)	7.47 (6.67-8.17)	8.69 (7.71-9.49)	10.1 (8.85-11.0)	12.2 (10.5-13.2)	14.0 (12.0-15.2)	
2-day	3.10 (2.82-3.43)	3.77 (3.44-4.17)	4.87 (4.43-5.38)	5.81 (5.27-6.40)	7.22 (6.50-7.93)	8.43 (7.55-9.25)	9.79 (8.70-10.7)	11.3 (9.96-12.4)	13.6 (11.8-14.9)	15.5 (13.4-17.0)	
3-day	3.27 (2.99-3.59)	3.97 (3.64-4.36)	5.11 (4.67-5.60)	6.07 (5.54-6.65)	7.51 (6.80-8.19)	8.75 (7.88-9.53)	10.1 (9.05-11.0)	11.6 (10.3-12.6)	13.9 (12.2-15.1)	15.9 (13.7-17.3)	
4-day	3.44 (3.17-3.76)	4.17 (3.84-4.56)	5.35 (4.91-5.83)	6.34 (5.80-6.89)	7.81 (7.11-8.46)	9.06 (8.20-9.81)	10.4 (9.39-11.3)	12.0 (10.7-12.9)	14.2 (12.6-15.4)	16.2 (14.1-17.5)	
7-day	4.02 (3.72-4.38)	4.84 (4.48-5.28)	6.11 (5.65-6.66)	7.18 (6.61-7.81)	8.74 (8.02-9.50)	10.1 (9.19-10.9)	11.5 (10.4-12.5)	13.1 (11.8-14.2)	15.5 (13.8-16.8)	17.5 (15.4-18.9)	
10-day	4.54 (4.21-4.91)	5.45 (5.06-5.90)	6.76 (6.27-7.31)	7.84 (7.26-8.48)	9.40 (8.66-10.1)	10.7 (9.81-11.5)	12.1 (11.0-13.0)	13.5 (12.3-14.6)	15.8 (14.2-17.0)	17.7 (15.7-19.1)	
20 - day	6.14 (5.76-6.56)	7.30 (6.85-7.80)	8.81 (8.25-9.41)	10.0 (9.38-10.7)	11.7 (10.9-12.5)	13.1 (12.1-13.9)	14.5 (13.4-15.4)	15.9 (14.7-17.0)	17.9 (16.4-19.1)	19.5 (17.7-20.9)	
30 - day	7.61 (7.17-8.09)	9.01 (8.49-9.57)	10.7 (10.1-11.4)	12.0 (11.3-12.8)	13.8 (13.0-14.7)	15.3 (14.3-16.2)	16.7 (15.6-17.7)	18.1 (16.9-19.3)	20.1 (18.6-21.4)	21.6 (19.9-23.0)	
45-day	9.70 (9.17-10.3)	11.4 (10.8-12.1)	13.4 (12.6-14.1)	14.8 (14.0-15.7)	16.7 (15.8-17.7)	18.2 (17.1-19.2)	19.6 (18.4-20.7)	20.9 (19.6-22.2)	22.7 (21.2-24.1)	24.0 (22.3-25.5)	
60-day	11.6 (11.0-12.3)	13.7 (13.0-14.4)	15.8 (14.9-16.6)	17.3 (16.4-18.3)	19.3 (18.3-20.4)	20.8 (19.6-21.9)	22.2 (20.9-23.4)	23.5 (22.1-24.8)	25.1 (23.5-26.6)	26.3 (24.6-27.9)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

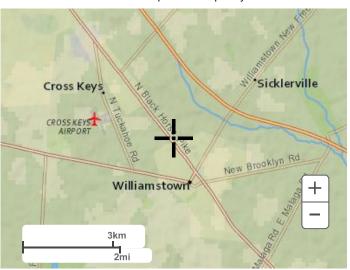

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

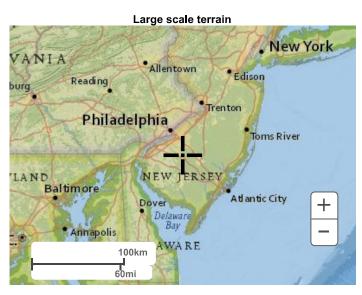
Please refer to NOAA Atlas 14 document for more information.

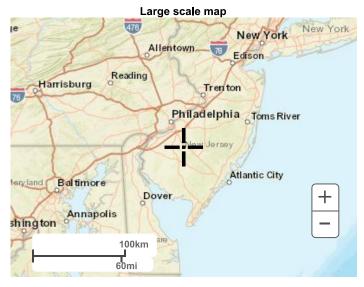
Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 39.6995°, Longitude: -75.0013°


NOAA Atlas 14, Volume 2, Version 3


Created (GMT): Wed Oct 21 16:57:21 2020


Back to Top

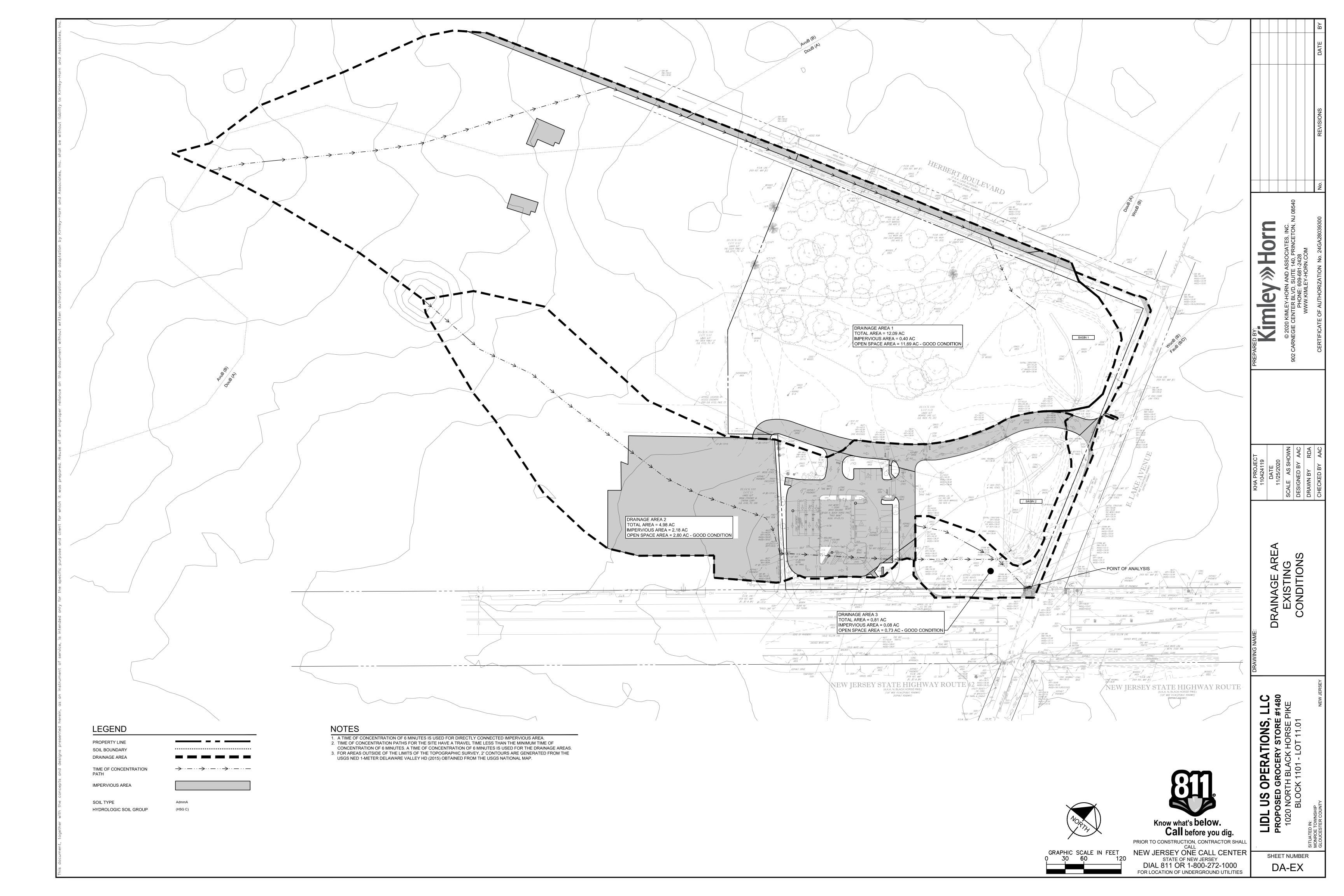
Maps & aerials

Small scale terrain

Large scale aerial

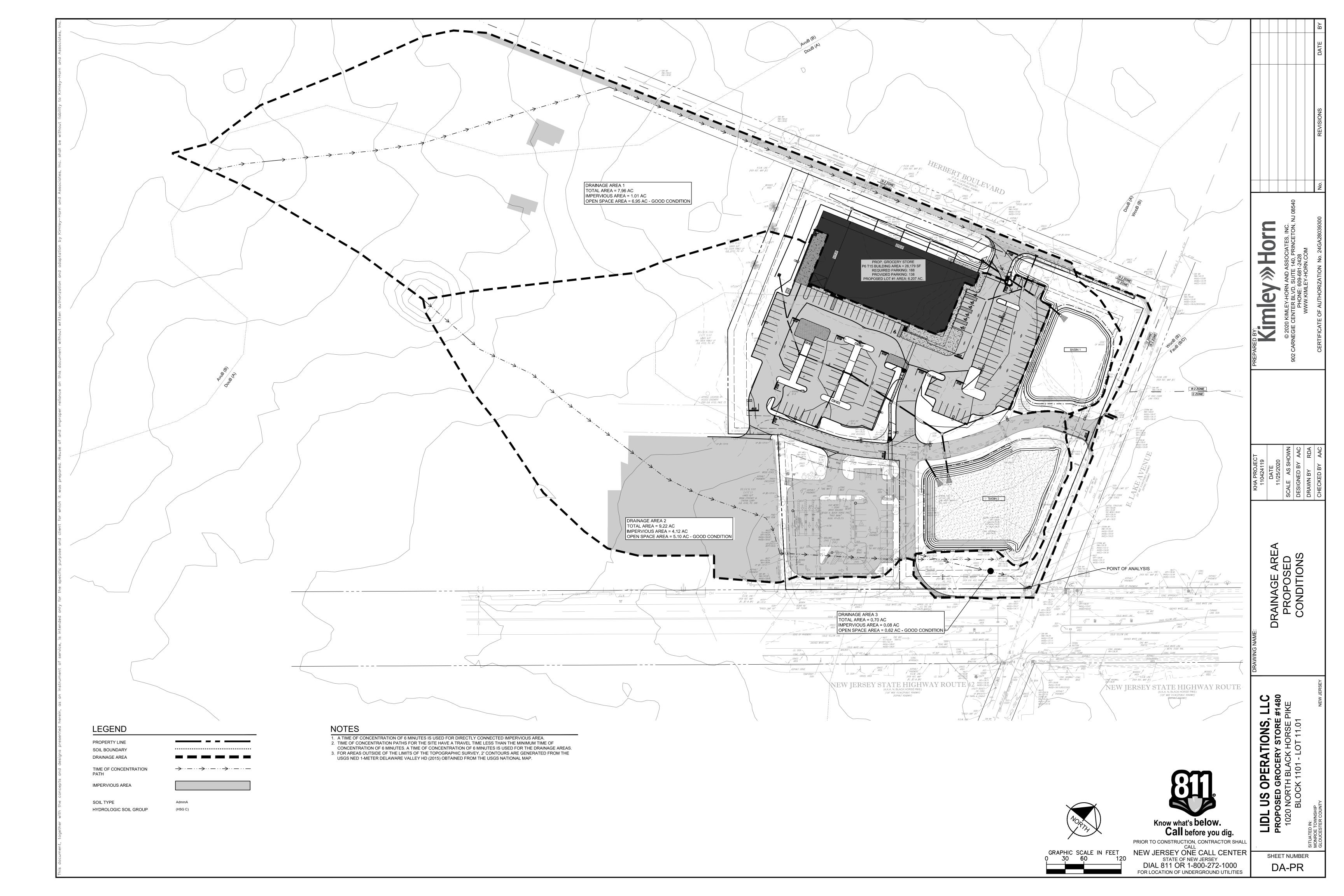
Back to Top

US Department of Commerce


National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ


EXHIBIT 1 - EXISTING CONDITIONDRAINAGE MAP

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ

EXHIBIT 2 – PROPOSED CONDITION DRAINAGE MAP

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ

4. APPENDICES

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ

APPENDIX A - SOIL TYPE

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D **Soil Rating Polygons** Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Gloucester County, New Jersey Survey Area Data: Version 18, Jun 1, 2020 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Data not available. **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor A/D shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AtsAr	Atsion sand, 0 to 2 percent slopes, rarely flooded	A/D	11.1	5.9%
AugB	Aura sandy loam, 2 to 5 percent slopes, Northern Tidewater Area	В	3.1	1.7%
AvuB	Aura-Urban land complex, 0 to 5 percent slopes	В	77.7	41.0%
DocB	Downer loamy sand, 0 to 5 percent slopes, Northern Coastal Plain	A	12.0	6.3%
DouB	Downer-Urban land complex, 0 to 5 percent slopes	A	34.5	18.2%
FauB	Fallsington-Urban land complex, 0 to 5 percent slopes	B/D	10.1	5.3%
MakAt	Manahawkin muck, 0 to 2 percent slopes, frequently flooded	A/D	2.9	1.5%
WokA	Woodstown-Glassboro complex, 0 to 2 percent slopes	В	26.3	13.9%
WooB	Woodstown-Urban land complex, 0 to 5 percent slopes	В	11.9	6.3%
Totals for Area of Inter	rest	I.	189.6	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

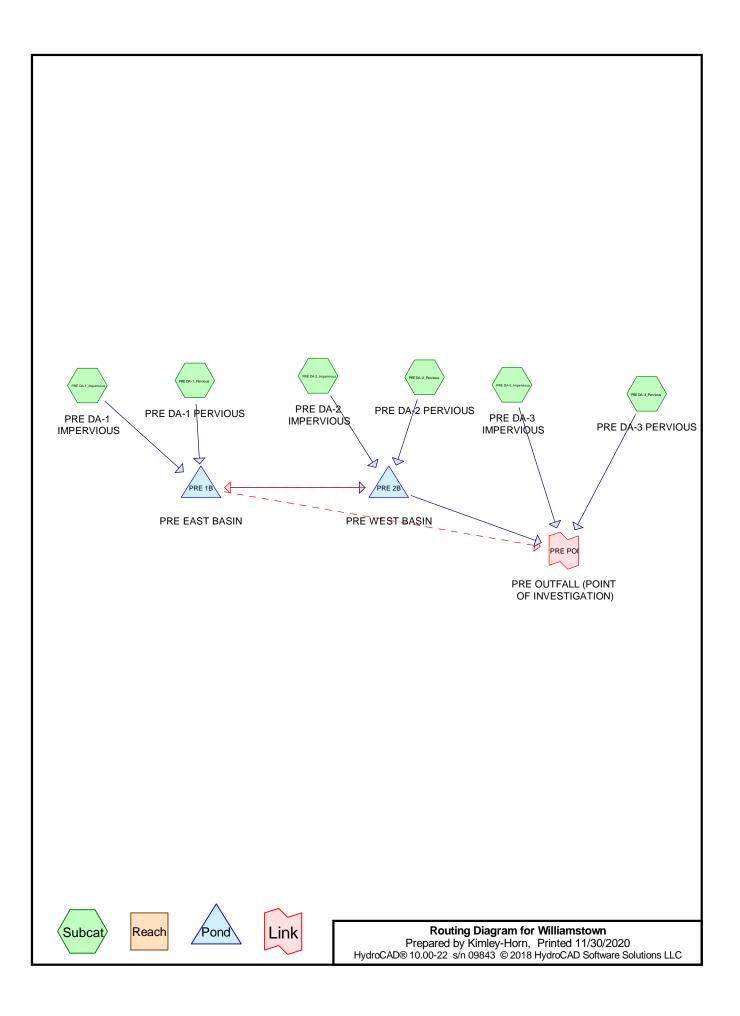
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition


Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ

APPENDIX B - HYDROCAD ANALYSIS - EXISTING

Williamstown

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC Printed 11/30/2020

Page 2

Area Listing (selected nodes)

Area (acres)	CN	Description (subcatchment-numbers)
0.890	39	>75% Grass cover, Good, HSG A (PRE DA-1_Pervious, PRE DA-2_Pervious, PRE
2.810	61	DA-3_Pervious) >75% Grass cover, Good, HSG B (PRE DA-1_Pervious, PRE DA-2_Pervious, PRE DA-3_Pervious)
0.910	80	>75% Grass cover, Good, HSG D (PRE DA-2_Pervious, PRE DA-3_Pervious)
2.110	98	Paved parking, HSG A (PRE DA-1_Impervious, PRE DA-2_Impervious)
0.480	98	Paved parking, HSG B (PRE DA-1_Impervious, PRE DA-2_Impervious, PRE DA-3_Impervious)
0.070	98	Paved parking, HSG D (PRE DA-2_Impervious, PRE DA-3_Impervious)
7.590	30	Woods, Good, HSG A (PRE DA-1_Pervious, PRE DA-2_Pervious)
3.020	55	Woods, Good, HSG B (PRE DA-1_Pervious, PRE DA-3_Pervious)
17.880	52	TOTAL AREA

Williamstown

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC Printed 11/30/2020

Page 3

Soil Listing (selected nodes)

Area	a Soil	Subcatchment
(acres)) Group	Numbers
10.590	HSG A	PRE DA-1_Impervious, PRE DA-1_Pervious, PRE DA-2_Impervious, PRE
		DA-2_Pervious, PRE DA-3_Pervious
6.310) HSG B	PRE DA-1_Impervious, PRE DA-1_Pervious, PRE DA-2_Impervious, PRE
		DA-2_Pervious, PRE DA-3_Impervious, PRE DA-3_Pervious
0.000) HSG C	
0.980) HSG D	PRE DA-2_Impervious, PRE DA-2_Pervious, PRE DA-3_Impervious, PRE
		DA-3_Pervious
0.000	Other	
17.880)	TOTAL AREA

Williamstown

PRE-DEVELOPMENT CONDITIONS

Type III 24-hr 2-YR Rainfall=3.31"

Printed 11/30/2020

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-144.00 hrs, dt=0.01 hrs, 14401 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Sim-Route method - Pond routing by Sim-Route method

Subcatchment PRE DA-1_Impervious: PRE Runoff Area=0.400 ac 100.00% Impervious Runoff Depth=3.08" Tc=6.0 min CN=98 Runoff=1.29 cfs 0.103 af

Subcatchment PRE DA-1_Pervious: PRE DA-1 Runoff Area=11.690 ac 0.00% Impervious Runoff Depth=0.03" Flow Length=1,456' Tc=62.6 min CN=43 Runoff=0.04 cfs 0.030 af

Subcatchment PRE DA-2_Impervious: PRE Runoff Area=2.180 ac 100.00% Impervious Runoff Depth=3.08" Tc=6.0 min CN=98 Runoff=7.01 cfs 0.559 af

Subcatchment PRE DA-2_Pervious: PRE DA-2Runoff Area=2.800 ac 0.00% Impervious Runoff Depth=0.02"
Flow Length=1,097' Tc=24.2 min CN=42 Runoff=0.01 cfs 0.005 af

Subcatchment PRE DA-3_Impervious: PRE Runoff Area=0.080 ac 100.00% Impervious Runoff Depth=3.08" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.021 af

Subcatchment PRE DA-3_Pervious: PRE DA-3 Runoff Area=0.730 ac 0.00% Impervious Runoff Depth=1.05" Flow Length=185' Tc=18.4 min CN=73 Runoff=0.59 cfs 0.064 af

Pond PRE 1B: PRE EAST BASIN

Peak Elev=138.66' Storage=3,135 cf Inflow=1.80 cfs 0.156 af

Primary=0.23 cfs 0.156 af Secondary=0.00 cfs 0.000 af Outflow=0.23 cfs 0.156 af

Pond PRE 2B: PRE WEST BASIN

Peak Elev=138.64' Storage=13,085 cf Inflow=7.17 cfs 0.720 af

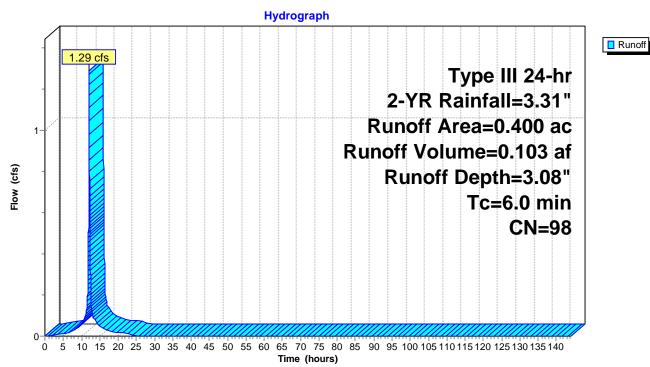
Primary=0.35 cfs 0.697 af Secondary=1.02 cfs 0.023 af Outflow=1.35 cfs 0.720 af

Link PRE POI: PRE OUTFALL (POINT OF INVESTIGATION)Inflow=1.04 cfs 0.781 af Primary=1.04 cfs 0.781 af

Total Runoff Area = 17.880 ac Runoff Volume = 0.781 af Average Runoff Depth = 0.52" 85.12% Pervious = 15.220 ac 14.88% Impervious = 2.660 ac

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment PRE DA-1 Impervious: PRE DA-1 IMPERVIOUS


Runoff 1.29 cfs @ 12.08 hrs, Volume= 0.103 af, Depth= 3.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.31"

	Area	(ac)	CN	Desc	cription		
	0.	180	98	Pave	ed parking.	, HSG A	
	0.	.220	98	Pave	ed parking	, HSG B	
	0.	400	98	Weig	hted Aver	age	
	0.	400		100.	00% Impe	rvious Area	
	Tc Length Slope Velocity Capacity						Description
_	(min) (feet) (ft/ft) (ft/sec) (cfs)						
	6.0						Direct Entry, Directly Connected Impervious Area

Direct Entry, Directly Connected Impervious Area

Subcatchment PRE DA-1_Impervious: PRE DA-1 IMPERVIOUS

Williamstown

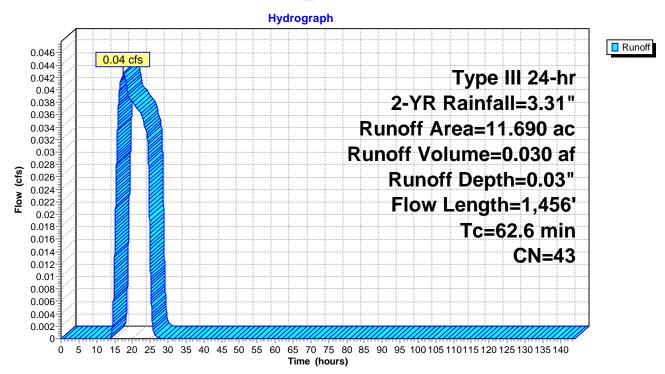
Prepared by Kimley-Horn

Area (ac) CN

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Description

Summary for Subcatchment PRE DA-1_Pervious: PRE DA-1 PERVIOUS


Runoff = 0.04 cfs @ 17.46 hrs, Volume= 0.030 af, Depth= 0.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.31"

_	7 (1 Cu)	<u>,uo, </u>	JI 1 DCC	Jonphon			
	0.	.540 3			cover, Good,	,	
	2.	.310 6	61 >75°	% Grass c	cover, Good,	,, HSG B	
	5.	.860 3	30 Woo	ods, Good,	, HSG A		
	2.	.980 5	55 Woo	ods, Good,	, HSG B		
-	11.	.690 4	43 Wei	eighted Aver	rage		
	11.	.690	100	0.00% Pervi	ious Area		
	Tc (min)	Length (feet)		,	Capacity (cfs)	Description	
-	40.2	100			. ,	Sheet Flow, Sheet Flow thru Wooded Area	
						Woods: Light underbrush n= 0.400 P2= 3.31"	
	13.8	557	0.0180	0.67		Shallow Concentrated Flow, Shallow Concentrated Sheet F	Flow Woo
						Woodland Kv= 5.0 fps	
	6.0	655	0.0080	1.82		Shallow Concentrated Flow, Shallow Concentrated Flow Al	Jong Road
						Paved Kv= 20.3 fps	_
	2.6	144	0.0350	0.94		Shallow Concentrated Flow, Shallow Concentrated Flow W	Vooded A
						Woodland Kv= 5.0 fps	
-	62.6	1,456	Total			<u> </u>	

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

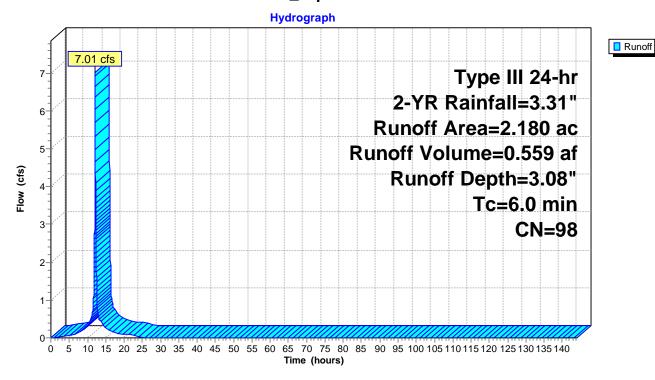
Subcatchment PRE DA-1_Pervious: PRE DA-1 PERVIOUS

Williamstown

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment PRE DA-2 Impervious: PRE DA-2 IMPERVIOUS


Runoff 7.01 cfs @ 12.08 hrs, Volume= 0.559 af, Depth= 3.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.31"

	Area	(ac)	CN	Desc	cription		
	1.	930	98	Pave	ed parking	, HSG A	
	0.	230	98	Pave	ed parking	, HSG B	
_	0.	020	98	Pave	ed parking	, HSG D	
	2.	180	98	Weig	hted Aver	age	
	2.	180		100.0	00% Impe	rvious Area	
	_						
	Tc	Leng		Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry, Directly Connected Impervious Area

Direct Entry, Directly Connected Impervious Area

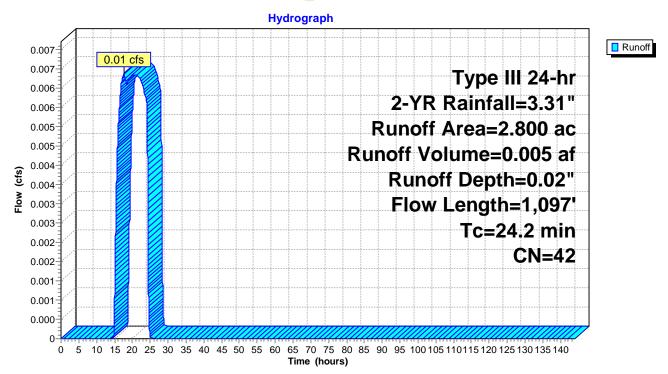
Subcatchment PRE DA-2_Impervious: PRE DA-2 IMPERVIOUS

Williamstown

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment PRE DA-2_Pervious: PRE DA-2 PERVIOUS


Runoff = 0.01 cfs @ 17.56 hrs, Volume= 0.005 af, Depth= 0.02"

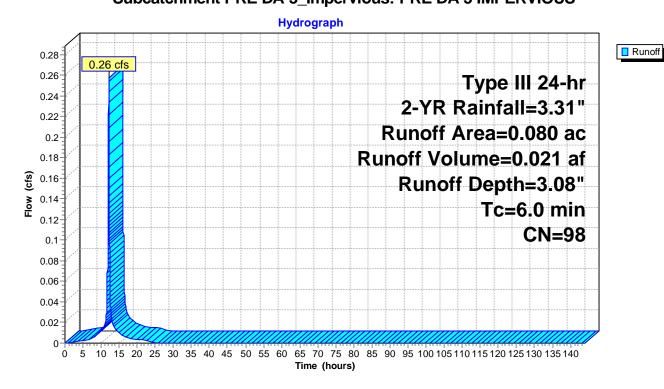
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.31"

	Area (ac) C	N Desc	cription			
_						LICC A	
					over, Good,		
	0.3	340 6			over, Good,		
	0.4	400 8	30 >759	% Grass co	over, Good,	, HSG D	
	1.	730 3	0 Woo	ds, Good,	HSG A		
	2.	800 4	2 Wei	ghted Aver	age		
	2.	800		00% Pervi			
	Tc	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	<u> </u>	
	11.8	100	0.0850	0.14		Sheet Flow, Sheet Flow thru Wooded Area	
	-	-	•	-		Woods: Light underbrush n= 0.400 P2= 3.31"	
	9.4	310	0.0120	0.55		Shallow Concentrated Flow, Shallow Concentrated Sheet Flow	w Wood
	C. .		0.0.20	0.00		Woodland Kv= 5.0 fps	
	2.0	310	0.0170	2.65		Shallow Concentrated Flow, Shallow Concentrated Sheet Flow	v Paved
		0.0	0.0	2.00		Paved Kv= 20.3 fps	
	1.0	377	0.0080	6.44	20.23	Pipe Channel, RCP_Round 24"	
	1.0	0,,	0.0000	0.11	20.20	24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'	
						n= 0.013	
_	24.2	1,097	Total			11- 0.010	

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Subcatchment PRE DA-2_Pervious: PRE DA-2 PERVIOUS

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC


Summary for Subcatchment PRE DA-3_Impervious: PRE DA-3 IMPERVIOUS

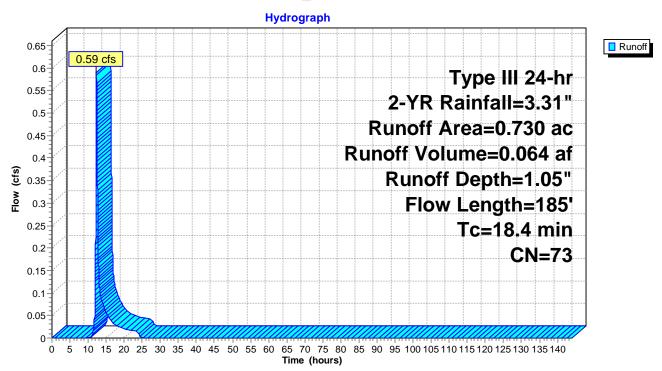
Runoff = 0.26 cfs @ 12.08 hrs, Volume= 0.021 af, Depth= 3.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.31"

Area (ac)		CN	Description			
	0.030	98	Pave	ed parking	, HSG B	
0.050 98			Paved parking, HSG D			
	0.080	98	Weighted Average			
	0.080		100.00% Impervious Area			
-	Tc Lengt		Slope	Velocity	Capacity	Description
(mi	n) (fe	eet)	(ft/ft)	(ft/sec)	(cfs)	
6	.0					Direct Entry, Directly Connected Impervious Area

Subcatchment PRE DA-3_Impervious: PRE DA-3 IMPERVIOUS

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC


Summary for Subcatchment PRE DA-3_Pervious: PRE DA-3 PERVIOUS

Runoff = 0.59 cfs @ 12.28 hrs, Volume= 0.064 af, Depth= 1.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.31"

Area ((ac) C	N Desc	cription			
0./	.020 3	39 >75%	% Grass co	over, Good,	, HSG A	
0.	.160 6	61 >75%	% Grass cr	over, Good,	, HSG B	
0./	.510 8	30 >75%	% Grass co	over, Good,	, HSG D	
0./	.040 5	55 Woo	ods, Good,	HSG B		
0.	.730 7	73 Weig	ghted Aver	rage		
0.	.730	100.	.00% Pervi	ous Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
17.2	100	0.0120	0.10		Sheet Flow, Sheet Flow over Grass	
1.2	85	0.0280	1.17		Grass: Dense n= 0.240 P2= 3.31" Shallow Concentrated Flow, Shallow Concentrated Flow over Short Grass Pasture Kv= 7.0 fps	r Grass
18.4	185	Total		·		ļ

Subcatchment PRE DA-3_Pervious: PRE DA-3 PERVIOUS

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 13

Summary for Pond PRE 1B: PRE EAST BASIN

Inflow = 1.80 cfs @ 12.18 hrs, Volume= 0.156 af

Outflow = 0.23 cfs @ 11.88 hrs, Volume= 0.156 af, Atten= 87%, Lag= 0.0 min

Primary = 0.23 cfs @ 11.88 hrs, Volume= 0.156 af

Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Sim-Route method, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Peak Elev= 138.66' @ 15.84 hrs Surf.Area= 8,346 sf Storage= 3,135 cf Flood Elev= 140.88' Surf.Area= 38,141 sf Storage= 43,393 cf

Plug-Flow detention time= 296.1 min calculated for 0.156 af (100% of inflow)

Accel Otamana Otamana Daganintian

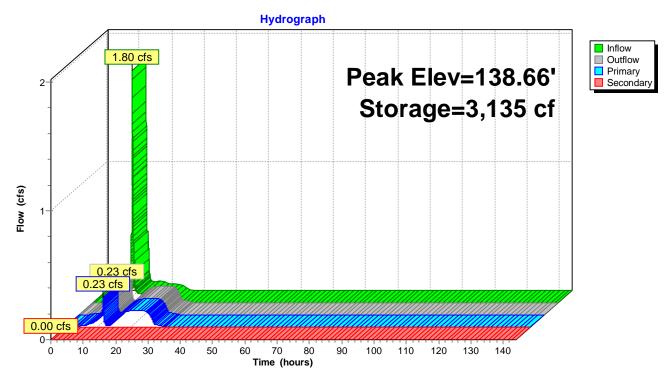
Center-of-Mass det. time= 294.8 min (1,134.5 - 839.7)

Volume	Invert	Avail.Stor	age Storage	Description	
#1	137.46'	68,83	33 cf Custom	Stage Data (Prismatic) Listed below (Recalc)	
Elevation	on Su	ırf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
137.4	ŀ6	13	0	0	
138.0	00	634	175	175	
139.0		12,333	6,484	6,658	
140.0		14,666	13,500	20,158	
141.0		41,342	28,004	48,162	
141.5	00	41,342	20,671	68,833	
Device	Routing	Invert	Outlet Devices	S	
#1	Primary	137.46'	24.0" Round	Culvert L= 76.0' RCP, groove end projecting, Ke= 0.20	00
				nvert= 137.46' / 137.09' S= 0.0049 '/' Cc= 0.900	
			,	w Area= 3.14 sf	
#2	Device 1	137.59'		fice/Grate C= 0.600	
#3	Device 1	139.46'	_	80' rise Sharp-Crested Rectangular Weir	
	D	4.44.00	2 End Contrac		
#4	Device 1	141.26'		Horiz. Orifice/Grate C= 0.600	
#5	Secondary	140.50'		ir flow at low heads I0.0' breadth Broad-Crested Rectangular Weir	
#3	Secondary	140.50		.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60	
			` '	1) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64	
			Coer. (English	1) 2.70 2.00 2.10 2.00 2.00 2.01 2.04	

Primary OutFlow Max=0.23 cfs @ 11.88 hrs HW=138.06' TW=137.77' (Dynamic Tailwater)

1=Culvert (Passes 0.23 cfs of 1.27 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.23 cfs @ 2.62 fps)


-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=137.46' TW=136.31' (Dynamic Tailwater) **5=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Pond PRE 1B: PRE EAST BASIN

Volume

Prepared by Kimley-Horn

Invert

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 15

Summary for Pond PRE 2B: PRE WEST BASIN

Inflow = 7.17 cfs @ 12.08 hrs, Volume= 0.720 af

Outflow = 1.35 cfs @ 12.18 hrs, Volume= 0.720 af, Atten= 81%, Lag= 6.1 min

Primary = 0.35 cfs @ 14.54 hrs, Volume= 0.697 af

Secondary = 1.02 cfs @ 12.18 hrs, Volume= 0.023 af

Routing by Sim-Route method, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Peak Elev= 138.64' @ 14.54 hrs Surf.Area= 10,218 sf Storage= 13,085 cf

Plug-Flow detention time= 394.5 min calculated for 0.719 af (100% of inflow) Center-of-Mass det. time= 394.4 min (1,235.0 - 840.6)

Avail.Storage Storage Description

#1	136.28'	42,59	93 cf Custon	n Stage Data (Prisn	natic) Listed below (Recalc)	
Elevation	on Su	ırf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
136.2	28	8	0	0		
137.0	00	2,829	1,021	1,021		
138.0	00	8,947	5,888	6,909		
139.0		10,919	9,933	16,842		
140.0		12,886	11,903	28,745		
141.0	00	14,810	13,848	42,593		
Device	Routing	Invert	Outlet Device	es		
#1	Primary	135.48'	24.0" Round	d Culvert L= 15.0'	RCP, groove end projecting, Ke= 0.200	
	,				35.05' S= 0.0287 '/' Cc= 0.900	
				ow Area= 3.14 sf		
#2	Device 1	138.83'			sted Rectangular Weir	
			2 End Contra			
#3	Primary	136.13'			RCP, groove end projecting, Ke= 0.200	
					34.45' S= 0.0350 '/' Cc= 0.900	
#4	Device 3	136.28'		ow Area= 1.23 sf	200	
# 4 #5	Device 3 Device 3	139.43'	3.0" Vert. Orifice/Grate C= 0.600 9.0' long x 1.25' rise Sharp-Crested Rectangular Weir			
#5	Device 3	139.43	2 End Contra		Sted Nectangular Well	
#6	Device 1	140.68'		' Horiz. Orifice/Gra	te C= 0.600	
"0	Device i	140.00		eir flow at low head		
#7	Primary	140.50'			nd-Crested Rectangular Weir	
	,				80 1.00 1.20 1.40 1.60	
					2.69 2.68 2.69 2.67 2.64	
#8	Secondary	137.46'			RCP, groove end projecting, Ke= 0.200	
	•				37.46' S= -0.0049 '/' Cc= 0.900	
			n= 0.013, Fl	ow Area= 3.14 sf		

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 16

Primary OutFlow Max=0.35 cfs @ 14.54 hrs HW=138.64' TW=136.31' (Dynamic Tailwater)

1=Culvert (Passes 0.00 cfs of 27.03 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

6=Orifice/Grate (Controls 0.00 cfs)

3=Culvert (Passes 0.35 cfs of 9.88 cfs potential flow)


4=Orifice/Grate (Orifice Controls 0.35 cfs @ 7.21 fps)

5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

7=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.41 cfs @ 12.18 hrs HW=138.34' TW=138.34' (Dynamic Tailwater) = Culvert (Outlet Controls 0.41 cfs @ 0.28 fps)

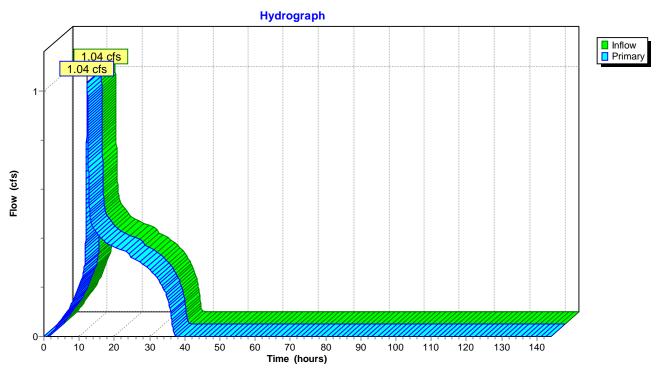
Pond PRE 2B: PRE WEST BASIN

Williamstown

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Summary for Link PRE POI: PRE OUTFALL (POINT OF INVESTIGATION)


Inflow = 1.04 cfs @ 12.25 hrs, Volume= 0.781 af

Primary = 1.04 cfs @ 12.26 hrs, Volume= 0.781 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs

Fixed water surface Elevation= 136.31'

Link PRE POI: PRE OUTFALL (POINT OF INVESTIGATION)

PRE-DEVELOPMENT CONDITIONS
Type III 24-hr 10-YR Rainfall=5.11"
Printed 11/30/2020

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 18

Time span=0.00-144.00 hrs, dt=0.01 hrs, 14401 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Sim-Route method - Pond routing by Sim-Route method

Subcatchment PRE DA-1_Impervious: PRE Runoff Area=0.400 ac 100.00% Impervious Runoff Depth=4.87" Tc=6.0 min CN=98 Runoff=2.00 cfs 0.162 af

Subcatchment PRE DA-1_Pervious: PRE DA-1 Runoff Area=11.690 ac 0.00% Impervious Runoff Depth=0.38" Flow Length=1,456' Tc=62.6 min CN=43 Runoff=0.94 cfs 0.375 af

Subcatchment PRE DA-2_Impervious: PRE Runoff Area=2.180 ac 100.00% Impervious Runoff Depth=4.87"

Tc=6.0 min CN=98 Runoff=10.90 cfs 0.885 af

Subcatchment PRE DA-2_Pervious: PRE DA-2Runoff Area=2.800 ac 0.00% Impervious Runoff Depth=0.34"
Flow Length=1,097' Tc=24.2 min CN=42 Runoff=0.27 cfs 0.080 af

Subcatchment PRE DA-3_Impervious: PRE Runoff Area=0.080 ac 100.00% Impervious Runoff Depth=4.87" Tc=6.0 min CN=98 Runoff=0.40 cfs 0.032 af

Subcatchment PRE DA-3_Pervious: PRE DA-3 Runoff Area=0.730 ac 0.00% Impervious Runoff Depth=2.37" Flow Length=185' Tc=18.4 min CN=73 Runoff=1.40 cfs 0.144 af

Pond PRE 1B: PRE EAST BASIN

Peak Elev=139.52' Storage=13,413 cf Inflow=5.00 cfs 0.625 af

Primary=0.47 cfs 0.625 af Secondary=0.00 cfs 0.000 af Outflow=0.47 cfs 0.625 af

Pond PRE 2B: PRE WEST BASIN

Peak Elev=139.03' Storage=17,142 cf Inflow=10.90 cfs 1.590 af

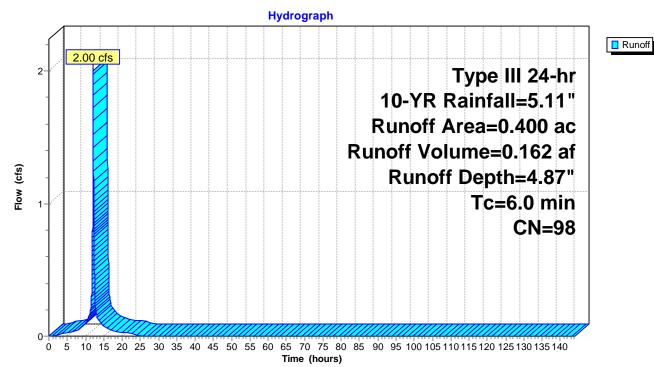
Primary=1.52 cfs 1.502 af Secondary=3.26 cfs 0.088 af Outflow=3.62 cfs 1.590 af

Link PRE POI: PRE OUTFALL (POINT OF INVESTIGATION)Inflow=2.33 cfs 1.678 af Primary=2.33 cfs 1.678 af

Total Runoff Area = 17.880 ac Runoff Volume = 1.679 af Average Runoff Depth = 1.13" 85.12% Pervious = 15.220 ac 14.88% Impervious = 2.660 ac

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment PRE DA-1 Impervious: PRE DA-1 IMPERVIOUS


Runoff 2.00 cfs @ 12.08 hrs, Volume= 0.162 af, Depth= 4.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=5.11"

Area	(ac)	CN	Desc	cription		
0.	180	98	Pave	ed parking	, HSG A	
 0.	220	98	Pave	ed parking	, HSG B	
0.	400	98	Weig	hted Aver	age	
0.400 100.00% Impervious Area						l
Tc	Leng	jth	Slope	Velocity	Capacity	Description
 (min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
6.0						Direct Entry, Directly Connected Impervious Area

Direct Entry, Directly Connected Impervious Area

Subcatchment PRE DA-1_Impervious: PRE DA-1 IMPERVIOUS

Prepared by Kimley-Horn

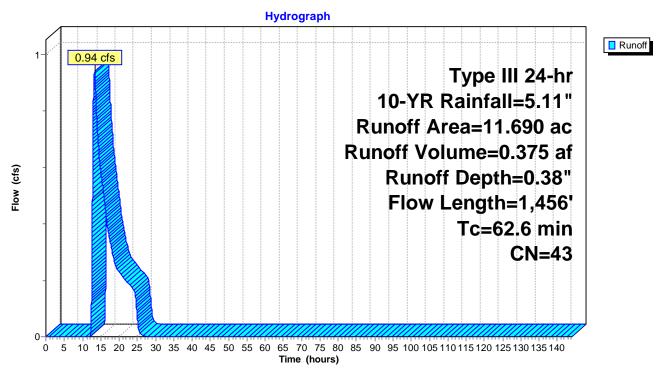
HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 20

Summary for Subcatchment PRE DA-1_Pervious: PRE DA-1 PERVIOUS

Runoff = 0.94 cfs @ 13.28 hrs, Volume= 0.375 af, Depth= 0.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=5.11"


Area	(ac) C	N Des	cription			
 0.	540 3	39 >75	% Grass co	over, Good.	, HSG A	
2.	310 6			over, Good		
5.	860 3		ods, Good,			
2.	980 5	55 Woo	ods, Good,	HSG B		
 11.	690 4	13 Wei	ghted Avei	rage		
11.	690		00% Pervi			
Tc	Length	Slope	Velocity	Capacity	Description	
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
40.2	100	0.0040	0.04		Sheet Flow, Sheet Flow thru Wooded Area	
					Woods: Light underbrush n= 0.400 P2= 3.31"	
13.8	557	0.0180	0.67		Shallow Concentrated Flow, Shallow Concentrated Sheet	Flow Wood
					Woodland Kv= 5.0 fps	
6.0	655	0.0080	1.82		Shallow Concentrated Flow, Shallow Concentrated Flow A	Along Road
					Paved Kv= 20.3 fps	
2.6	144	0.0350	0.94		Shallow Concentrated Flow, Shallow Concentrated Flow V	Nooded Are
					Woodland Kv= 5.0 fps	
62.6	1,456	Total				

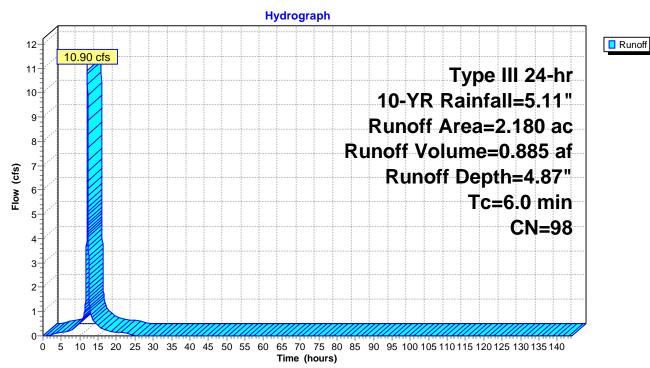
Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 21

Subcatchment PRE DA-1_Pervious: PRE DA-1 PERVIOUS

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC


Summary for Subcatchment PRE DA-2_Impervious: PRE DA-2 IMPERVIOUS

Runoff = 10.90 cfs @ 12.08 hrs, Volume= 0.885 af, Depth= 4.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=5.11"

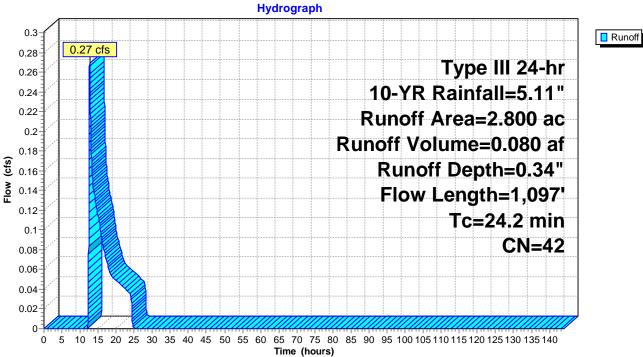
	Area	(ac)	CN	Desc	cription		
	1.	930	98	Pave	ed parking	, HSG A	
	0.	230	98	Pave	ed parking	, HSG B	
_	0.	020	98	Pave	ed parking	, HSG D	
	2.	180	98	Weig	ghted Aver	age	
	2.	180		100.	00% Impe	rvious Area	
_	Tc (min)	Leng (fe		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0						Direct Entry, Directly Connected Impervious Area

Subcatchment PRE DA-2_Impervious: PRE DA-2 IMPERVIOUS

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 23


Summary for Subcatchment PRE DA-2_Pervious: PRE DA-2 PERVIOUS

Runoff = 0.27 cfs @ 12.64 hrs, Volume= 0.080 af, Depth= 0.34"

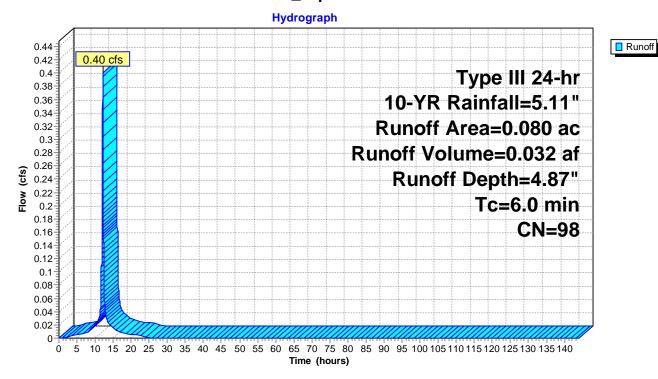
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=5.11"

Area ((ac) C	N Des	cription			
0.3	330 3	39 >75°	% Grass co	over, Good	HSG A	
					,	
		•				
				0.07 1. 2 2.		
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
11.8	100	0.0850	0.14	, ,	Sheet Flow. Sheet Flow thru Wooded Area	
		•	•••		•	
9.4	310	0.0120	0.55			w Wood
-					Woodland Kv= 5.0 fps	
2.0	310	0.0170	2.65		Shallow Concentrated Flow, Shallow Concentrated Sheet Flow	w Paved
					Paved Kv= 20.3 fps	
1.0	377	0.0080	6.44	20.23	Pipe Channel, RCP_Round 24"	
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'	
					n= 0.013	
24.2	1,097	Total				
	0.3 0.4 1.7 2.8 7c (min) 11.8 9.4 2.0	0.330 3 0.340 6 0.400 8 1.730 3 2.800 4 2.800 Tc Length (min) (feet) 11.8 100 9.4 310 2.0 310 1.0 377	0.330 39 >759 0.340 61 >759 0.400 80 >759 1.730 30 Woo 2.800 42 Weig 2.800 100.0 Tc Length Slope (min) (feet) (ft/ft) 11.8 100 0.0850 9.4 310 0.0120 2.0 310 0.0170 1.0 377 0.0080	0.330 39 >75% Grass co 0.340 61 >75% Grass co 0.400 80 >75% Grass co 1.730 30 Woods, Good, 2.800 42 Weighted Aver 2.800 100.00% Pervio Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec) 11.8 100 0.0850 0.14 9.4 310 0.0120 0.55 2.0 310 0.0170 2.65 1.0 377 0.0080 6.44	0.330 39 >75% Grass cover, Good 0.340 61 >75% Grass cover, Good 0.400 80 >75% Grass cover, Good 1.730 30 Woods, Good, HSG A 2.800 42 Weighted Average 2.800 100.00% Pervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 11.8 100 0.0850 0.14 9.4 310 0.0120 0.55 2.0 310 0.0170 2.65 1.0 377 0.0080 6.44 20.23	0.330 39 >75% Grass cover, Good, HSG A 0.340 61 >75% Grass cover, Good, HSG B 0.400 80 >75% Grass cover, Good, HSG D 1.730 30 Woods, Good, HSG A 2.800 42 Weighted Average 2.800 100.00% Pervious Area Tc Length (feet) Slope Velocity Capacity (ft/ft) Description 11.8 100 0.0850 0.14 Sheet Flow, Sheet Flow thru Wooded Area Woods: Light underbrush n= 0.400 P2= 3.31" 9.4 310 0.0120 0.55 Shallow Concentrated Flow, Shallow Concentrated Sheet Flow Woodland Kv= 5.0 fps 2.0 310 0.0170 2.65 Shallow Concentrated Flow, Shallow Concentrated Sheet Flow Paved Kv= 20.3 fps 1.0 377 0.0080 6.44 20.23 Pipe Channel, RCP_Round 24" 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50' n= 0.013

Subcatchment PRE DA-2 Pervious: PRE DA-2 PERVIOUS

Page 24

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC


Summary for Subcatchment PRE DA-3_Impervious: PRE DA-3 IMPERVIOUS

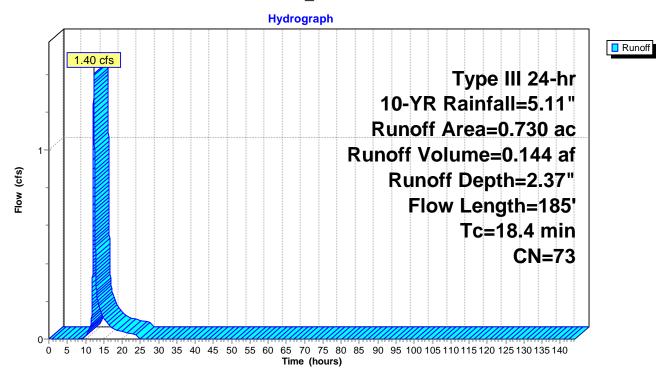
Runoff = 0.40 cfs @ 12.08 hrs, Volume= 0.032 af, Depth= 4.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=5.11"

Area	a (ac)	CN	Desc	Description					
	0.030	98	Pave	ed parking	, HSG B				
	0.050	050 98 Paved parking, HSG D							
	0.080 98 Weighted Average								
	0.080		100.	00% Impe	rvious Area				
To	: Len	gth	Slope	Velocity	Capacity	Description			
(min) (fe	et)	(ft/ft)	(ft/sec)	(cfs)				
6.0)					Direct Entry, Directly Connected Impervious Area			

Subcatchment PRE DA-3_Impervious: PRE DA-3 IMPERVIOUS

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC


Summary for Subcatchment PRE DA-3_Pervious: PRE DA-3 PERVIOUS

Runoff = 1.40 cfs @ 12.25 hrs, Volume= 0.144 af, Depth= 2.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=5.11"

Area ((ac) C	N Desc	cription			
0./	.020 3	39 >75%	% Grass co	over, Good,	, HSG A	
0.	.160 6	61 >75%	% Grass cr	over, Good,	, HSG B	
0./	.510 8	30 >75%	% Grass co	over, Good,	, HSG D	
0./	.040 5	55 Woo	ods, Good,	HSG B		
0.	.730 7	73 Weig	ghted Aver	rage		
0.	.730	100.	.00% Pervi	ous Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
17.2	100	0.0120	0.10		Sheet Flow, Sheet Flow over Grass	
1.2	85	0.0280	1.17		Grass: Dense n= 0.240 P2= 3.31" Shallow Concentrated Flow, Shallow Concentrated Flow over Short Grass Pasture Kv= 7.0 fps	r Grass
18.4	185	Total		·		ļ

Subcatchment PRE DA-3_Pervious: PRE DA-3 PERVIOUS

Volume

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 27

Summary for Pond PRE 1B: PRE EAST BASIN

Inflow = 5.00 cfs @ 12.12 hrs, Volume= 0.625 af
Outflow = 0.47 cfs @ 16.53 hrs, Volume= 0.625 af, Atten= 91%, Lag= 264.8 min
Outflow = 0.47 cfs @ 16.53 hrs, Volume= 0.625 af, O.625 af
Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Sim-Route method, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Peak Elev= 139.52' @ 16.52 hrs Surf.Area= 13,551 sf Storage= 13,413 cf Flood Elev= 140.88' Surf.Area= 38,141 sf Storage= 43,393 cf

Plug-Flow detention time= 488.3 min calculated for 0.625 af (100% of inflow)

Avail.Storage Storage Description

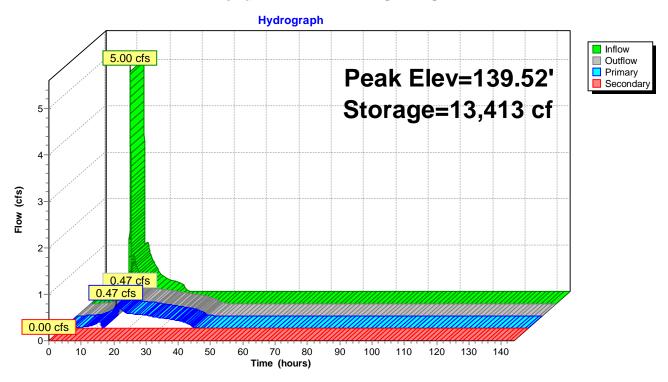
Center-of-Mass det. time= 488.0 min (1,391.2 - 903.2)

Invert

#1	137.46'	68,8	33 cf Custom	Stage Data (Pri	smatic) Listed below (Recalc)
Elevatio		urf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
137.4	ŀ6	13	0	0	
138.0	00	634	175	175	
139.0	00	12,333	6,484	6,658	
140.0	00	14,666	13,500	20,158	
141.0	00	41,342	28,004	48,162	
141.5	50	41,342	20,671	68,833	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	137.46'	Inlet / Outlet I		0' RCP, groove end projecting, Ke= 0.200 137.09' S= 0.0049 '/' Cc= 0.900
#2	Device 1	137.59'		fice/Grate C= (
#3	Device 1	139.46'			rested Rectangular Weir
			2 End Contra	•	3
#4	Device 1	141.26'		Horiz. Orifice/G	rate C= 0.600
			Limited to we	ir flow at low hea	ads
#5	Secondary	140.50'	Head (feet) (0.20 0.40 0.60 (oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=0.47 cfs @ 16.53 hrs HW=139.52' TW=138.94' (Dynamic Tailwater)

-1=Culvert (Passes 0.47 cfs of 11.50 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.32 cfs @ 3.68 fps)


-3=Sharp-Crested Rectangular Weir (Weir Controls 0.15 cfs @ 0.81 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=137.46' TW=136.31' (Dynamic Tailwater) **5=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Pond PRE 1B: PRE EAST BASIN

Volume

Prepared by Kimley-Horn

Invert

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 29

Summary for Pond PRE 2B: PRE WEST BASIN

Inflow = 10.90 cfs @ 12.08 hrs, Volume= 1.590 af
Outflow = 3.62 cfs @ 12.14 hrs, Volume= 1.590 af, Atten= 67%, Lag= 3.5 min
Primary = 1.52 cfs @ 12.73 hrs, Volume= 1.502 af
Secondary = 3.26 cfs @ 12.14 hrs, Volume= 0.088 af

Routing by Sim-Route method, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Peak Elev= 139.03' @ 12.73 hrs Surf.Area= 10,973 sf Storage= 17,142 cf

Plug-Flow detention time= 369.6 min calculated for 1.590 af (100% of inflow) Center-of-Mass det. time= 369.3 min (1,381.7 - 1,012.5)

Avail.Storage Storage Description

VOIGITIO	HIVOIT	7 (V (III . O (O I	age Storage	Description	
#1	136.28'	42,59	3 cf Custom	Stage Data (Prismatic) Listed below (Recalc)
Elevation		rf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
136.2	28	8	0	0	
137.0	00	2,829	1,021	1,021	
138.0		8,947	5,888	6,909	
139.0		10,919	9,933	16,842	
140.0		12,886	11,903	28,745	
141.0	00	14,810	13,848	42,593	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	135.48'	24.0" Round	Culvert L= 15.0' RCP, groove end projecti	ng, Ke= 0.200
	-			nvert= 135.48' / 135.05').900
				w Area= 3.14 sf	
#2	Device 1	138.83'		85' rise Sharp-Crested Rectangular Weir	
#3	Drimory	136.13'	2 End Contra		na Ka 0.200
#3	Primary	130.13		Culvert L= 48.0' RCP, groove end projecti nvert= 136.13' / 134.45' S= 0.0350 '/' Cc= 0	
				ow Area= 1.23 sf	7.900
#4	Device 3	136.28'		fice/ Grate C= 0.600	
# -1 #5	Device 3	139.43'		25' rise Sharp-Crested Rectangular Weir	
"0	DOVIGO O	100.40	2 End Contra		
#6	Device 1	140.68'		Horiz. Orifice/Grate C= 0.600	
			Limited to we	ir flow at low heads	
#7	Primary	140.50'	60.0' long x	10.0' breadth Broad-Crested Rectangular We	;ir
			Head (feet) (0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60	
			Coef. (Englis	n) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.6	4
#8	Secondary	137.46'		Culvert L= 76.0' RCP, groove end projecti	
				nvert= 137.09' / 137.46' S= -0.0049 '/' Cc=	0.900
			n= 0.013, Flo	w Area= 3.14 sf	

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 30

Primary OutFlow Max=1.52 cfs @ 12.73 hrs HW=139.03' TW=136.31' (Dynamic Tailwater)

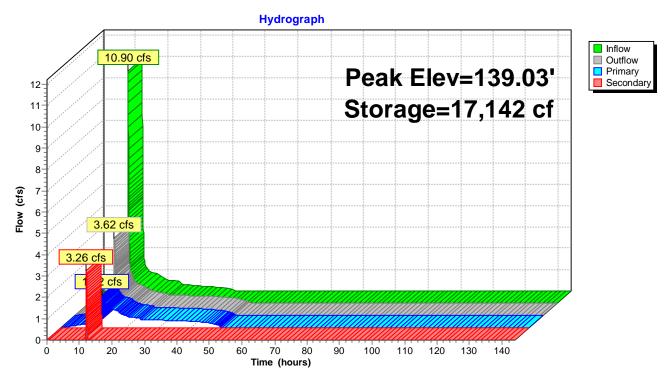
1=Culvert (Passes 1.14 cfs of 30.10 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Weir Controls 1.14 cfs @ 1.45 fps)

6=Orifice/Grate (Controls 0.00 cfs)

3=Culvert (Passes 0.38 cfs of 10.66 cfs potential flow)

4=Orifice/Grate (Orifice Controls 0.38 cfs @ 7.80 fps)


5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

7=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=2.79 cfs @ 12.14 hrs HW=138.75' TW=138.69' (Dynamic Tailwater)

—8=Culvert (Outlet Controls 2.79 cfs @ 1.36 fps)

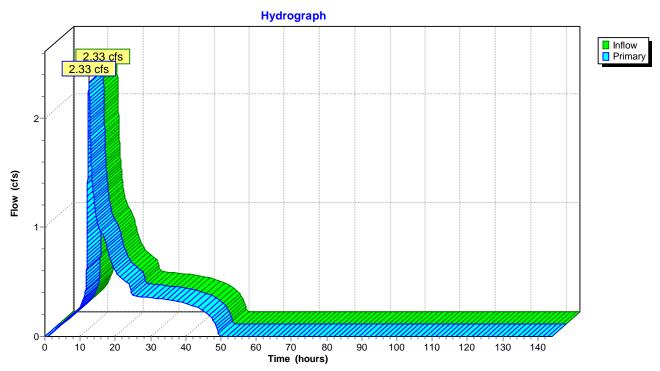
Pond PRE 2B: PRE WEST BASIN

Williamstown

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Summary for Link PRE POI: PRE OUTFALL (POINT OF INVESTIGATION)


Inflow = 2.33 cfs @ 12.48 hrs, Volume= 1.678 af

Primary = 2.33 cfs @ 12.49 hrs, Volume= 1.678 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs

Fixed water surface Elevation= 136.31'

Link PRE POI: PRE OUTFALL (POINT OF INVESTIGATION)

PRE-DEVELOPMENT CONDITIONS
Type III 24-hr 100-YR Rainfall=8.69"
Printed 11/30/2020

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 32

Time span=0.00-144.00 hrs, dt=0.01 hrs, 14401 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Sim-Route method - Pond routing by Sim-Route method

Subcatchment PRE DA-1_Impervious: PRE Runoff Area=0.400 ac 100.00% Impervious Runoff Depth=8.45" Tc=6.0 min CN=98 Runoff=3.41 cfs 0.282 af

Subcatchment PRE DA-1_Pervious: PRE DA-1 Runoff Area=11.690 ac 0.00% Impervious Runoff Depth=1.89" Flow Length=1,456' Tc=62.6 min CN=43 Runoff=8.31 cfs 1.841 af

Subcatchment PRE DA-2_Impervious: PRE Runoff Area=2.180 ac 100.00% Impervious Runoff Depth=8.45"

Tc=6.0 min CN=98 Runoff=18.61 cfs 1.535 af

Subcatchment PRE DA-2_Pervious: PRE DA-2 Runoff Area=2.800 ac 0.00% Impervious Runoff Depth=1.78" Flow Length=1,097' Tc=24.2 min CN=42 Runoff=2.98 cfs 0.415 af

Subcatchment PRE DA-3_Impervious: PRE Runoff Area=0.080 ac 100.00% Impervious Runoff Depth=8.45" Tc=6.0 min CN=98 Runoff=0.68 cfs 0.056 af

Subcatchment PRE DA-3_Pervious: PRE DA-3 Runoff Area=0.730 ac 0.00% Impervious Runoff Depth=5.43" Flow Length=185' Tc=18.4 min CN=73 Runoff=3.24 cfs 0.330 af

Pond PRE 1B: PRE EAST BASIN

Peak Elev=140.24' Storage=24,471 cf Inflow=9.55 cfs 2.296 af

Primary=6.76 cfs 2.296 af Secondary=0.00 cfs 0.000 af Outflow=6.76 cfs 2.296 af

Pond PRE 2B: PRE WEST BASIN

Peak Elev=139.55' Storage=23,086 cf Inflow=19.24 cfs 4.247 af

Primary=9.19 cfs 4.073 af Secondary=5.98 cfs 0.173 af Outflow=11.53 cfs 4.246 af

Link PRE POI: PRE OUTFALL (POINT OF INVESTIGATION)Inflow=12.16 cfs 4.459 af Primary=12.16 cfs 4.459 af

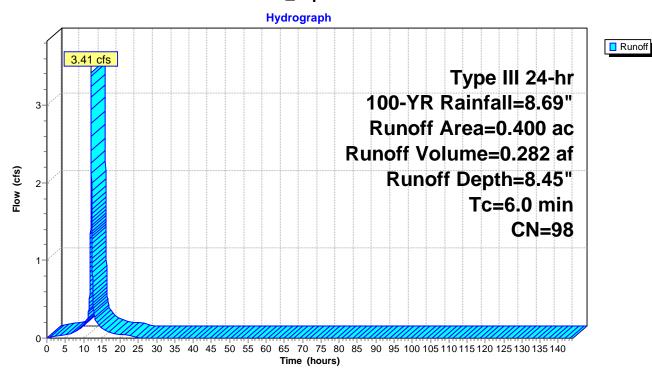
Total Runoff Area = 17.880 ac Runoff Volume = 4.460 af Average Runoff Depth = 2.99" 85.12% Pervious = 15.220 ac 14.88% Impervious = 2.660 ac

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 33

Summary for Subcatchment PRE DA-1 Impervious: PRE DA-1 IMPERVIOUS


Runoff 3.41 cfs @ 12.08 hrs, Volume= 0.282 af, Depth= 8.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=8.69"

	Area	(ac)) CN Description						
	0.	180	98	Pave	ed parking.	, HSG A			
	0.	.220	98	Pave	ed parking	, HSG B			
	0.400 98 Weighted Average								
0.400 100.00% Impervious Area									
	Тс	Leng	jth	Slope	Velocity	Capacity	Description		
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)			
	6.0						Direct Entry, Directly Connected Impervious Area		

Direct Entry, Directly Connected Impervious Area

Subcatchment PRE DA-1_Impervious: PRE DA-1 IMPERVIOUS

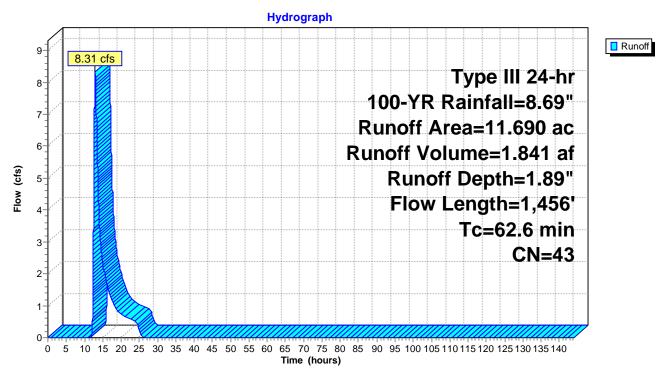
Prepared by Kimley-Horn

Area (ac) CN

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Description

Page 34


Summary for Subcatchment PRE DA-1_Pervious: PRE DA-1 PERVIOUS

Runoff = 8.31 cfs @ 13.00 hrs, Volume= 1.841 af, Depth= 1.89"

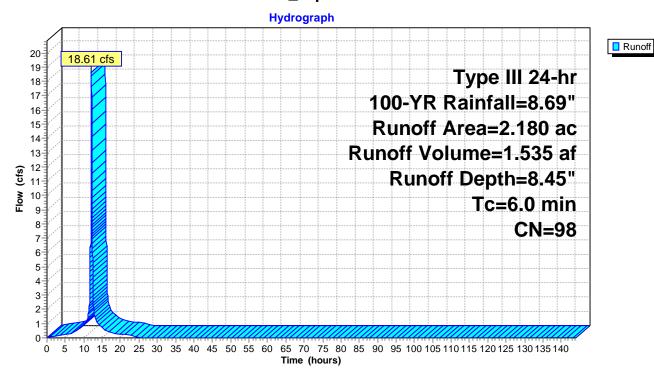
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=8.69"

	7 ti Cu	(40)	1 000	oription			
•	0.	540 3	9 >759	% Grass co	over, Good,	, HSG A	
	2.	310 6	51 >759	% Grass co	over, Good,	, HSG B	
	5.	860 3	0 Woo	ds, Good,	HSG A		
	2.	980 5	5 Woo	ds, Good,	HSG B		
	11.	690 4	3 Wei	ghted Aver	age		
	11.	690	100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
•	40.2	100	0.0040	0.04		Sheet Flow, Sheet Flow thru Wooded Area	
						Woods: Light underbrush n= 0.400 P2= 3.31"	
	13.8	557	0.0180	0.67		Shallow Concentrated Flow, Shallow Concentrated Sheet	Flow Wood
						Woodland Kv= 5.0 fps	
	6.0	655	0.0080	1.82		Shallow Concentrated Flow, Shallow Concentrated Flow	Along Road
						Paved Kv= 20.3 fps	
	2.6	144	0.0350	0.94		Shallow Concentrated Flow, Shallow Concentrated Flow V	Nooded Are
						Woodland Kv= 5.0 fps	
	62.6	1,456	Total				

Subcatchment PRE DA-1_Pervious: PRE DA-1 PERVIOUS

Page 36

Summary for Subcatchment PRE DA-2 Impervious: PRE DA-2 IMPERVIOUS


Runoff 18.61 cfs @ 12.08 hrs, Volume= 1.535 af, Depth= 8.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=8.69"

_	Area	(ac)	CN	Desc	cription		
	1.	930	98	Pave	ed parking	, HSG A	
	0.	230	98	Pave	ed parking	, HSG B	
_	0.	020	98	Pave	ed parking	, HSG D	
	2.	180	98	Weig	ghted Aver	age	
	2.	180		100.	00% Impe	rvious Area	
	Tc	Leng	jth	Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry, Directly Connected Impervious Area

Direct Entry, Directly Connected Impervious Area

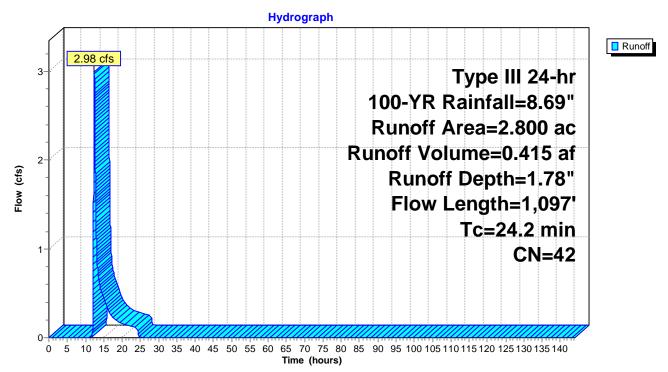
Subcatchment PRE DA-2_Impervious: PRE DA-2 IMPERVIOUS

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 37

Summary for Subcatchment PRE DA-2_Pervious: PRE DA-2 PERVIOUS


Runoff = 2.98 cfs @ 12.40 hrs, Volume= 0.415 af, Depth= 1.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=8.69"

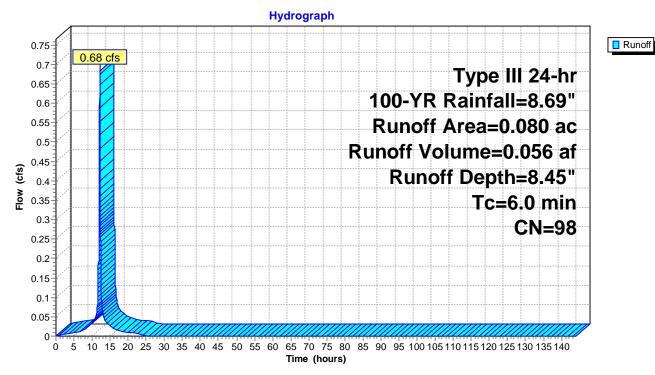
Area	(ac) C	N Desc	cription		
0.	.330 3	39 >75%	% Grass co	over, Good,	, HSG A
0.	.340 6	31 >75%	% Grass co	over, Good,	, HSG B
0.	.400 8	30 >75%	% Grass co	over, Good,	, HSG D
1.	.730 3	30 Woo	ods, Good,	HSG A	
2.	.800 4	12 Weig	ghted Aver	rage	
2.	.800		00% Pervi		
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
11.8	100	0.0850	0.14		Sheet Flow, Sheet Flow thru Wooded Area
					Woods: Light underbrush n= 0.400 P2= 3.31"
9.4	310	0.0120	0.55		Shallow Concentrated Flow, Shallow Concentrated Sheet Flow Woo
					Woodland Kv= 5.0 fps
2.0	310	0.0170	2.65		Shallow Concentrated Flow, Shallow Concentrated Sheet Flow Pav
					Paved Kv= 20.3 fps
1.0	377	0.0080	6.44	20.23	Pipe Channel, RCP_Round 24"
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.013
24.2	1,097	Total			

Page 38

Subcatchment PRE DA-2_Pervious: PRE DA-2 PERVIOUS

Page 39

Summary for Subcatchment PRE DA-3_Impervious: PRE DA-3 IMPERVIOUS


Runoff = 0.68 cfs @ 12.08 hrs, Volume= 0.056 af, Depth= 8.45"

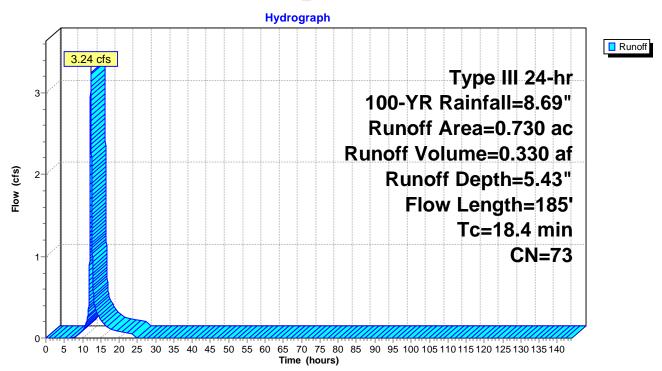
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=8.69"

Are	ea (ac)	CN	Desc	cription		
	0.030	98	Pave	ed parking	, HSG B	
	0.050	98	Pave	ed parking	, HSG D	
	0.080	98	Weig	ghted Aver	age	
	0.080		100.	00% Impe	rvious Area	l .
T	c Len	gth	Slope	Velocity	Capacity	Description
(mir	$(f\epsilon)$	et)	(ft/ft)	(ft/sec)	(cfs)	
6.	0					Direct Entry, Directly Connected Impervious Area

Direct Littly, Directly Confidence impervious Are

Subcatchment PRE DA-3_Impervious: PRE DA-3 IMPERVIOUS

Page 40


Summary for Subcatchment PRE DA-3_Pervious: PRE DA-3 PERVIOUS

Runoff = 3.24 cfs @ 12.25 hrs, Volume= 0.330 af, Depth= 5.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=8.69"

Area	(ac) C	ON Des	scription			
0	0.020	39 >75	√ Grass c	over, Good,	, HSG A	
0).160	61 >75	ن% Grass c	over, Good,	, HSG B	
0).510 8	80 >75	5% Grass c∉	over, Good,	, HSG D	•
0	0.040	55 Wo	ods, Good,	HSG B		
0).730	73 We	eighted Aver	rage		
0).730	100	0.00% Pervi	ious Area		
_						
Tc	- 3		•	Capacity	Description	
<u>(min)</u>	(feet)	(ft/ft)) (ft/sec)	(cfs)		
17.2	100	0.0120	0.10		Sheet Flow, Sheet Flow over Grass	ļ
					Grass: Dense n= 0.240 P2= 3.31"	ļ
1.2	85	0.0280	1.17		Shallow Concentrated Flow, Shallow Concentrated Flow over	: Grass
					Short Grass Pasture Kv= 7.0 fps	ļ
18.4	185	Total	·			

Subcatchment PRE DA-3_Pervious: PRE DA-3 PERVIOUS

Volume

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 41

Summary for Pond PRE 1B: PRE EAST BASIN

Inflow = 9.55 cfs @ 12.10 hrs, Volume= 2.296 af

Outflow = 6.76 cfs @ 13.35 hrs, Volume= 2.296 af, Atten= 29%, Lag= 74.9 min

Primary = 6.76 cfs @ 13.35 hrs, Volume= 2.296 af

Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Sim-Route method, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Peak Elev= 140.24' @ 13.35 hrs Surf.Area= 21,100 sf Storage= 24,471 cf Flood Elev= 140.88' Surf.Area= 38,141 sf Storage= 43,393 cf

Plug-Flow detention time= 185.9 min calculated for 2.296 af (100% of inflow)

Avail.Storage Storage Description

Center-of-Mass det. time= 185.6 min (1,083.1 - 897.5)

Invert

<u> </u>	1111 011	7 (17 (1111 (1011	ago ciolago	Boodinparon		
#1	137.46'	68,83	3 cf Custom	Stage Data (Prismati	c) Listed below (Recalc)	
Elevatio		ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
		· · · ·				
137.4		13	0	0		
138.0	00	634	175	175		
139.0	00	12,333	6,484	6,658		
140.0	00	14,666	13,500	20,158		
141.0	00	41,342	28,004	48,162		
141.5	50	41,342	20,671	68,833		
Device	Routing	Invert	Outlet Device	S		
#1	Primary	137.46'	Inlet / Outlet In		CP, groove end projecting, 9' S= 0.0049 '/' Cc= 0.900	
#2	Device 1	137.59'	4.0" Vert. Orif	fice/Grate C= 0.600		
#3	Device 1	139.46'		30' rise Sharp-Crested		
#4	Device 1	141.26'		Horiz. Orifice/Grate ir flow at low heads	C= 0.600	
#5	Secondary	140.50'	Head (feet) 0	.20 0.40 0.60 0.80	Trested Rectangular Weir 1.00 1.20 1.40 1.60 69 2.68 2.69 2.67 2.64	

Primary OutFlow Max=6.76 cfs @ 13.35 hrs HW=140.24' TW=139.53' (Dynamic Tailwater)

1=Culvert (Passes 6.76 cfs of 14.51 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.35 cfs @ 4.06 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 6.40 cfs @ 2.88 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=137.46' TW=136.31' (Dynamic Tailwater) **5=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 42

Pond PRE 1B: PRE EAST BASIN

Volume

Prepared by Kimley-Horn

Invert

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 43

Summary for Pond PRE 2B: PRE WEST BASIN

Inflow = 19.24 cfs @ 12.09 hrs, Volume= 4.247 af

Outflow = 11.53 cfs @ 12.14 hrs, Volume= 4.246 af, Atten= 40%, Lag= 3.3 min

Primary = 9.19 cfs @ 12.39 hrs, Volume= 4.073 af

Secondary = 5.98 cfs @ 12.11 hrs, Volume= 0.173 af

Routing by Sim-Route method, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Peak Elev= 139.55' @ 12.39 hrs Surf.Area= 11,991 sf Storage= 23,086 cf

Plug-Flow detention time= 166.6 min calculated for 4.246 af (100% of inflow) Center-of-Mass det. time= 166.6 min (1,108.6 - 941.9)

Avail.Storage Storage Description

VOIGITIC	IIIVGIL	Avaii.Otoi	age Clorage	Description	
#1	136.28'	42,59	3 cf Custom	Stage Data (Prismatic) Listed belo	w (Recalc)
Elevation	on Su	rf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
136.2	28	8	0	0	
137.0		2,829	1,021	1,021	
138.0		8,947	5,888	6,909	
139.0		10,919	9,933	16,842	
140.0		12,886	11,903	28,745	
141.0	00	14,810	13,848	42,593	
Device	Routing	Invert	Outlet Device	3	
#1	Primary	135.48'	24.0" Round	Culvert L= 15.0' RCP, groove er	nd projecting, Ke= 0.200
	•		Inlet / Outlet In	vert= 135.48' / 135.05' S= 0.0287	' '/' Cc= 0.900
				w Area= 3.14 sf	
#2	Device 1	138.83'		5' rise Sharp-Crested Rectangula	r Weir
"0	Delasas	400.40	2 End Contract		
#3	Primary	136.13'		Culvert L= 48.0' RCP, groove er overt= 136.13' / 134.45' S= 0.0350	
				w Area= 1.23 sf	7 / CC= 0.900
#4	Device 3	136.28'		i ce/Grate C= 0.600	
# -1 #5	Device 3	139.43'		5' rise Sharp-Crested Rectangular	r Weir
"0	DOVIGO O	100.40	2 End Contract		110
#6	Device 1	140.68'		Horiz. Orifice/Grate C= 0.600	
			Limited to we	flow at low heads	
#7	Primary	140.50'	60.0' long x 1	0.0' breadth Broad-Crested Recta	ngular Weir
				20 0.40 0.60 0.80 1.00 1.20 1.4	
) 2.49 2.56 2.70 2.69 2.68 2.69	
#8	Secondary	137.46'		Culvert L= 76.0' RCP, groove en	
				vert= 137.09' / 137.46' S= -0.004	9 7 Cc= 0.900
			n = 0.013, Flo	w Area= 3.14 sf	

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 44

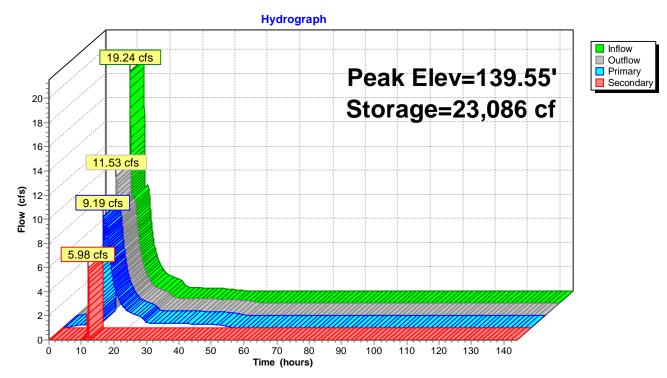
Primary OutFlow Max=9.19 cfs @ 12.39 hrs HW=139.55' TW=136.31' (Dynamic Tailwater)

1=Culvert (Passes 7.63 cfs of 33.10 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Weir Controls 7.63 cfs @ 2.77 fps)

6=Orifice/Grate (Controls 0.00 cfs)

3=Culvert (Passes 1.56 cfs of 11.63 cfs potential flow)


4=Orifice/Grate (Orifice Controls 0.42 cfs @ 8.53 fps)

5=Sharp-Crested Rectangular Weir (Weir Controls 1.15 cfs @ 1.11 fps)

7=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=5.35 cfs @ 12.11 hrs HW=139.34' TW=139.23' (Dynamic Tailwater) —8=Culvert (Outlet Controls 5.35 cfs @ 1.89 fps)

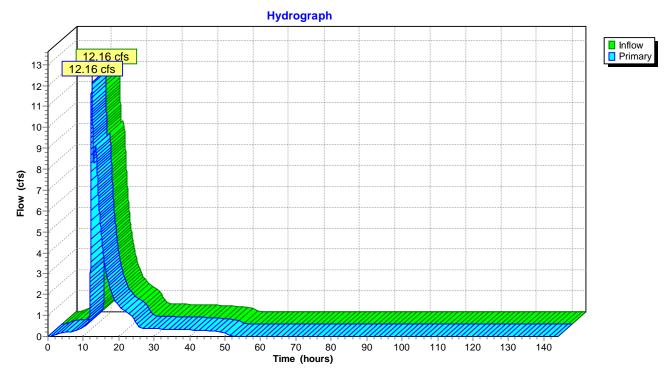
Pond PRE 2B: PRE WEST BASIN

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 45

Summary for Link PRE POI: PRE OUTFALL (POINT OF INVESTIGATION)


Inflow = 12.16 cfs @ 12.34 hrs, Volume= 4.459 af

Primary = 12.16 cfs @ 12.35 hrs, Volume= 4.459 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs

Fixed water surface Elevation= 136.31'

Link PRE POI: PRE OUTFALL (POINT OF INVESTIGATION)

PRE-DEVELOPMENT CONDITIONS NJ DEP 2-hr DEP 2-HR Rainfall=1.25"

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC Printed 11/30/2020 Page 46

Time span=0.00-144.00 hrs, dt=0.01 hrs, 14401 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Sim-Route method - Pond routing by Sim-Route method

Subcatchment PRE DA-1_Impervious: PRE Runoff Area=0.400 ac 100.00% Impervious Runoff Depth=1.03" Tc=6.0 min CN=98 Runoff=1.17 cfs 0.034 af

Subcatchment PRE DA-1_Pervious: PRE DA-1 Runoff Area=11.690 ac 0.00% Impervious Runoff Depth=0.00" Flow Length=1,456' Tc=62.6 min CN=43 Runoff=0.00 cfs 0.000 af

Subcatchment PRE DA-2_Impervious: PRE Runoff Area=2.180 ac 100.00% Impervious Runoff Depth=1.03"

Tc=6.0 min CN=98 Runoff=6.38 cfs 0.188 af

Subcatchment PRE DA-2_Pervious: PRE DA-2Runoff Area=2.800 ac 0.00% Impervious Runoff Depth=0.00"
Flow Length=1,097' Tc=24.2 min CN=42 Runoff=0.00 cfs 0.000 af

Subcatchment PRE DA-3_Impervious: PRE Runoff Area=0.080 ac 100.00% Impervious Runoff Depth=1.03" Tc=6.0 min CN=98 Runoff=0.23 cfs 0.007 af

Subcatchment PRE DA-3_Pervious: PRE DA-3 Runoff Area=0.730 ac 0.00% Impervious Runoff Depth=0.06" Flow Length=185' Tc=18.4 min CN=73 Runoff=0.06 cfs 0.004 af

Pond PRE 1B: PRE EAST BASIN

Peak Elev=138.27' Storage=772 cf Inflow=1.17 cfs 0.034 af

Primary=0.29 cfs 0.034 af Secondary=0.00 cfs 0.000 af Outflow=0.29 cfs 0.034 af

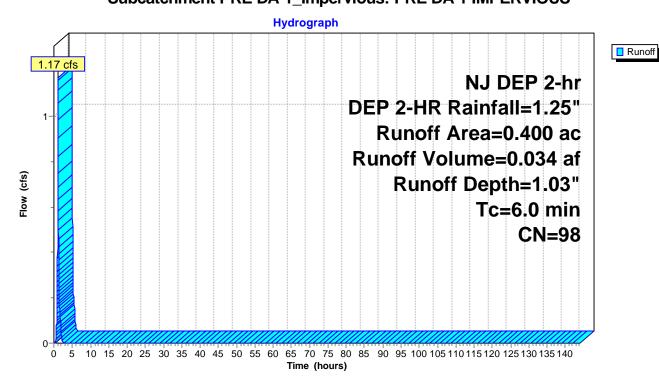
Pond PRE 2B: PRE WEST BASIN Peak Elev=138.09' Storage=7,755 cf Inflow=6.65 cfs 0.222 af Primary=0.31 cfs 0.222 af Secondary=0.00 cfs 0.000 af Outflow=0.31 cfs 0.222 af

Link PRE POI: PRE OUTFALL (POINT OF INVESTIGATION)Inflow=0.49 cfs 0.233 af Primary=0.49 cfs 0.233 af

Total Runoff Area = 17.880 ac Runoff Volume = 0.233 af Average Runoff Depth = 0.16" 85.12% Pervious = 15.220 ac 14.88% Impervious = 2.660 ac Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 47


Summary for Subcatchment PRE DA-1_Impervious: PRE DA-1 IMPERVIOUS

Runoff = 1.17 cfs @ 1.11 hrs, Volume= 0.034 af, Depth= 1.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs NJ DEP 2-hr DEP 2-HR Rainfall=1.25"

 Area	(ac)	CN	Desc	cription		
0.	180	98	Pave	ed parking	, HSG A	
 0.	220	98	Pave	ed parking	, HSG B	
0.	400	98	Weig	hted Aver	age	
0.	400		100.	00% Impe	rvious Area	
				•		
Tc	Leng	jth	Slope	Velocity	Capacity	Description
 (min)	(fe	et)	(ft/ft)	(ft/sec)	(cfs)	
6.0						Direct Entry, Directly Connected Impervious Area

Subcatchment PRE DA-1_Impervious: PRE DA-1 IMPERVIOUS

Area (ac)

CN

Description

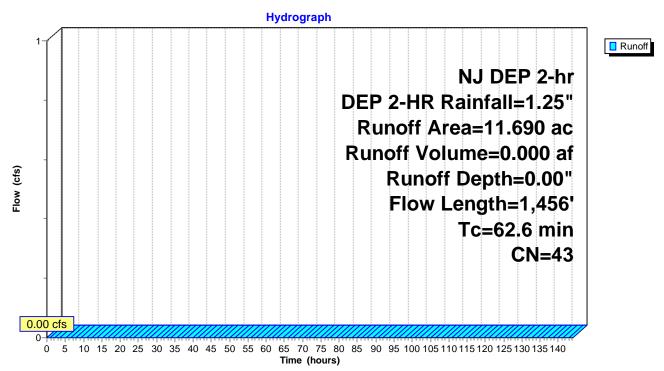
Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 48

Summary for Subcatchment PRE DA-1_Pervious: PRE DA-1 PERVIOUS

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs NJ DEP 2-hr DEP 2-HR Rainfall=1.25"

_	/ ti Cu ((ao) Oi	1 000	oription			
_					over, Good,		
	2.	.310 6	51 >75%	% Grass co	over, Good,	, HSG B	,
	5.	.860 3	30 Woo	ods, Good,	HSG A		,
_	2.	.980 5	55 Woo	ods, Good,	HSG B		,
-	11.	.690 4	13 Weig	ghted Aver	rage		ļ
	11.	.690	100.	.00% Pervi	ous Area		!
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
-	40.2	100	0.0040	0.04		Sheet Flow, Sheet Flow thru Wooded Area	
	•					Woods: Light underbrush n= 0.400 P2= 3.31"	
	13.8	557	0.0180	0.67		Shallow Concentrated Flow, Shallow Concentrated Sheet F	Flow Wood
						Woodland Kv= 5.0 fps	
	6.0	655	0.0080	1.82		Shallow Concentrated Flow, Shallow Concentrated Flow Al	Jong Road
						Paved Kv= 20.3 fps	_
	2.6	144	0.0350	0.94		Shallow Concentrated Flow, Shallow Concentrated Flow W	Vooded Are
_				<u> </u>		Woodland Kv= 5.0 fps	
-	62.6	1,456	Total				

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

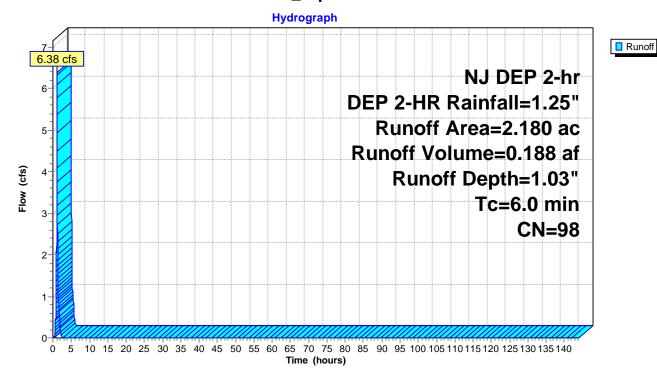
Page 49

Subcatchment PRE DA-1_Pervious: PRE DA-1 PERVIOUS

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 50

Summary for Subcatchment PRE DA-2 Impervious: PRE DA-2 IMPERVIOUS


Runoff 6.38 cfs @ 1.11 hrs, Volume= 0.188 af, Depth= 1.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs NJ DEP 2-hr DEP 2-HR Rainfall=1.25"

 Area	(ac)	CN	Desc	ription		
1.	930	98	Pave	ed parking	HSG A	
0	230	98	Pave	ed parking	HSG B	
 0.	020	98	Pave	ed parking	HSG D	
2.	180	98	Weig	hted Aver	age	
2.	180		100.0	00% Impe	rvious Area	
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0	•					Direct Entry, Directly Connected Impervious Area

Direct Entry, Directly Connected Impervious Area

Subcatchment PRE DA-2_Impervious: PRE DA-2 IMPERVIOUS

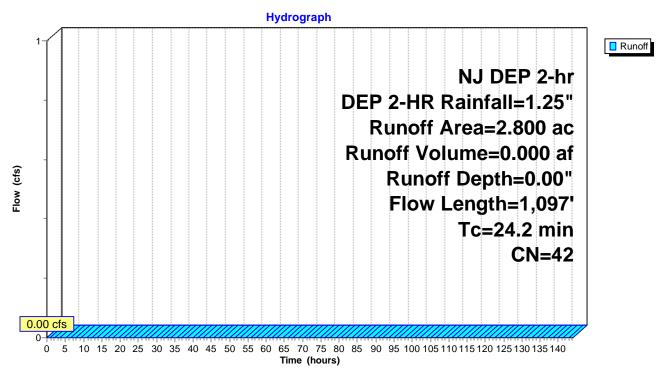
Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 51

Summary for Subcatchment PRE DA-2_Pervious: PRE DA-2 PERVIOUS

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs NJ DEP 2-hr DEP 2-HR Rainfall=1.25"

	Δ	() O	N. D.	anta e a a		
_	Area	<u>(ac) C</u>	N Desc	cription		
	0.	330 3	39 >759	% Grass co	over, Good	, HSG A
	0.	340 6	31 >759	% Grass co	over, Good	, HSG B
	0.	400 8	30 >759	% Grass co	over, Good	. HSG D
				ds, Good,		
_				ghted Aver		
		800 -	•	00% Pervi		
	۷.	000	100.	00 /6 F CIVI	ous Alea	
	То	Longth	Clono	Volocity	Conneity	Description
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	11.8	100	0.0850	0.14		Sheet Flow, Sheet Flow thru Wooded Area
						Woods: Light underbrush n= 0.400 P2= 3.31"
	9.4	310	0.0120	0.55		Shallow Concentrated Flow, Shallow Concentrated Sheet Flow Wood
						Woodland Kv= 5.0 fps
	2.0	310	0.0170	2.65		Shallow Concentrated Flow, Shallow Concentrated Sheet Flow Pave
						Paved Kv= 20.3 fps
	1.0	377	0.0080	6.44	20.23	
	1.0	011	0.0000	0.11	20.20	24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
						n= 0.013
-	04.0	4.007	T-4-1			11- 0.010
	24.2	1,097	Total			

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 52

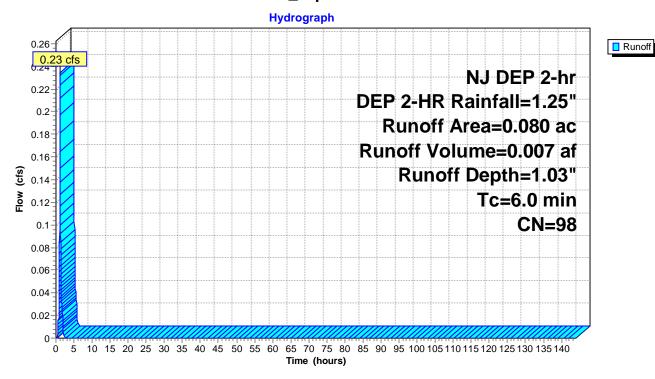
Subcatchment PRE DA-2_Pervious: PRE DA-2 PERVIOUS

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 53

Summary for Subcatchment PRE DA-3 Impervious: PRE DA-3 IMPERVIOUS

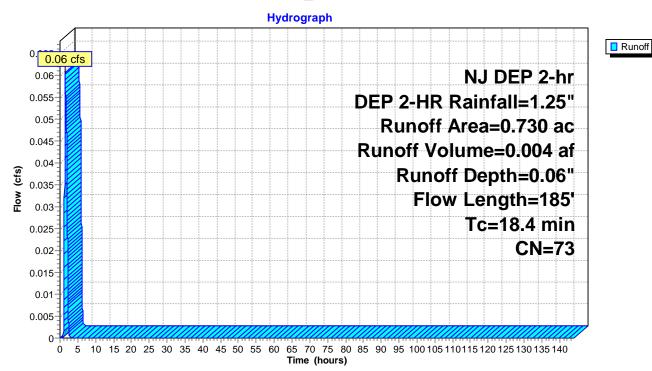

Runoff 0.23 cfs @ 1.11 hrs, Volume= 0.007 af, Depth= 1.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs NJ DEP 2-hr DEP 2-HR Rainfall=1.25"

Area	(ac)	CN	Desc	cription		
0.030 98 Paved parking, HSG B						
 0.050 98 Paved parking, HSG D						
0.	080	98	Weig	hted Aver	age	
0.	080		100.	00% Impe	rvious Area	l
_						
Tc Length Slope Velocity Capacity						Description
 (min) (feet) (ft/ft) (ft/sec) (cfs)						
 6.0						Direct Entry, Directly Connected Impervious Area

Direct Entry, Directly Connected Impervious Area

Subcatchment PRE DA-3_Impervious: PRE DA-3 IMPERVIOUS


Summary for Subcatchment PRE DA-3_Pervious: PRE DA-3 PERVIOUS

Runoff = 0.06 cfs @ 1.41 hrs, Volume= 0.004 af, Depth= 0.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs NJ DEP 2-hr DEP 2-HR Rainfall=1.25"

Area	(ac) C	N Desc	cription			
0.	020 3	39 >75%	% Grass co	over, Good,	, HSG A	
0.	160 6	51 >75%	% Grass co	over, Good,	, HSG B	
0.	510 8	30 >75%	% Grass co	over, Good,	, HSG D	
0.	040 5	55 Woo	ods, Good,	HSG B		
0.	730 7	'3 Weig	ghted Aver	age		
0.	730	100.	00% Pervi	ous Area		
Тс	Length	Slope	Velocity	Capacity	Description	ļ
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
17.2	100	0.0120	0.10		Sheet Flow, Sheet Flow over Grass	
					Grass: Dense n= 0.240 P2= 3.31"	
1.2	85	0.0280	1.17		Shallow Concentrated Flow, Shallow Concentrated Flow over	Grass
					Short Grass Pasture Kv= 7.0 fps	
18.4	185	Total				

Subcatchment PRE DA-3_Pervious: PRE DA-3 PERVIOUS

Volume

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 55

Printed 11/30/2020

Summary for Pond PRE 1B: PRE EAST BASIN

Inflow 1.17 cfs @ 1.11 hrs. Volume= 0.034 af Outflow 1.18 hrs, Volume= 0.29 cfs @ 0.034 af, Atten= 75%, Lag= 4.3 min Primary 0.29 cfs @ 1.18 hrs, Volume= 0.034 af 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Secondary =

Routing by Sim-Route method, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Peak Elev= 138.27' @ 1.34 hrs Surf.Area= 3,791 sf Storage= 772 cf Flood Elev= 140.88' Surf.Area= 38,141 sf Storage= 43,393 cf

Plug-Flow detention time= 54.4 min calculated for 0.034 af (99% of inflow)

Avail.Storage Storage Description

Center-of-Mass det. time= 54.2 min (124.5 - 70.3)

Invert

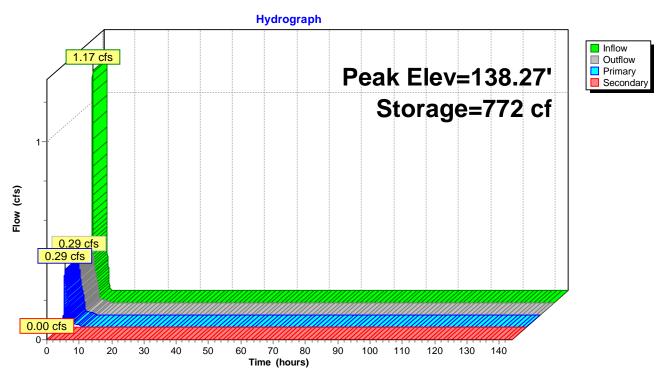
#1	137.46'	68,83	33 cf Custom	Stage Data (Pri	smatic) Listed below (Recalc)
Elevation S		ırf.Area	Inc.Store	Cum.Store	
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	
137.4	ŀ6	13	0	0	
138.0	00	634	175	175	
139.0	00	12,333	6,484	6,658	
140.0	00	14,666	13,500	20,158	
141.0	00	41,342	28,004	48,162	
141.5	50	41,342	20,671	68,833	
Device	Routing	Invert	Outlet Devices	S	
#1	Primary	137.46'			0' RCP, groove end projecting, Ke= 0.200
					137.09' S= 0.0049 '/' Cc= 0.900
" O	Davis 4	407.50	•	w Area= 3.14 sf	
#2	Device 1	137.59'		rice/Grate C= (
#3	Device 1	139.46'		•	rested Rectangular Weir
щл	Davisa 4	4.44.00	2 End Contrac	\ /	rote C 0.000
#4	Device 1	141.26'		Horiz. Orifice/Go r flow at low hea	
#5	Secondary	140.50'			oad-Crested Rectangular Weir
			•		0.80 1.00 1.20 1.40 1.60
			, ,		70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=0.29 cfs @ 1.18 hrs HW=138.24' TW=137.77' (Dynamic Tailwater)

1=Culvert (Passes 0.29 cfs of 2.50 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.29 cfs @ 3.29 fps)

—3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)


-4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=137.46' TW=136.31' (Dynamic Tailwater) **5=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 56

Pond PRE 1B: PRE EAST BASIN

Volume

Prepared by Kimley-Horn

Invert

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 57

Summary for Pond PRE 2B: PRE WEST BASIN

Inflow	=	6.65 cfs @	1.11 hrs, Volume=	0.222 af
Outflow	=	0.31 cfs @	2.07 hrs, Volume=	0.222 af, Atten= 95%, Lag= 57.6 min
Primary	=	0.31 cfs @	2.07 hrs, Volume=	0.222 af
Secondary	′ =	0.00 cfs @	0.00 hrs, Volume=	0.000 af

Routing by Sim-Route method, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Peak Elev= 138.09' @ 2.07 hrs Surf.Area= 9,131 sf Storage= 7,755 cf

Plug-Flow detention time= 260.5 min calculated for 0.222 af (100% of inflow) Center-of-Mass det. time= 260.1 min (338.7 - 78.6)

Avail.Storage Storage Description

VOIGITIC	IIIVCIL	Avaii.Otol	age Clorage	Description	
#1	136.28'	42,59	3 cf Custom	Stage Data (Prisr	natic) Listed below (Recalc)
Elevation		rf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
136.2	28	8	0	0	
137.0		2,829	1,021	1,021	
138.0		8,947	5,888	6,909	
139.0		10,919	9,933	16,842	
140.0		12,886	11,903	28,745	
141.0	00	14,810	13,848	42,593	
Device	Routing	Invert	Outlet Device	s	
#1	Primary	135.48'	24.0" Round	Culvert L= 15.0'	RCP, groove end projecting, Ke= 0.200
	•		Inlet / Outlet I	nvert= 135.48' / 13	35.05' S= 0.0287 '/' Cc= 0.900
	5	400.001		w Area= 3.14 sf	
#2	Device 1	138.83'	4.0' long x 1.85' rise Sharp-Crested Rectangular Weir 2 End Contraction(s)		
#3	Primary	136.13'		` ,	RCP, groove end projecting, Ke= 0.200
					34.45' S= 0.0350 '/' Cc= 0.900
			n= 0.013, Flo	w Area= 1.23 sf	
#4	Device 3	136.28'	3.0" Vert. Ori	fice/Grate $C=0.0$	600
#5	Device 3	139.43'	9.0' long x 1.2	25' rise Sharp-Cre	sted Rectangular Weir
			2 End Contract		
#6	Device 1	140.68'		Horiz. Orifice/Gra	
				ir flow at low head	
#7	Primary	140.50'			ad-Crested Rectangular Weir
					80 1.00 1.20 1.40 1.60
" 0	0 1	407.40			2.69 2.68 2.69 2.67 2.64
#8	Secondary	137.46'			RCP, groove end projecting, Ke= 0.200
					37.46' S= -0.0049 '/' Cc= 0.900
			11= 0.013, FIO	ow Area= 3.14 sf	

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 58

Printed 11/30/2020

Primary OutFlow Max=0.31 cfs @ 2.07 hrs HW=138.09' TW=136.31' (Dynamic Tailwater)

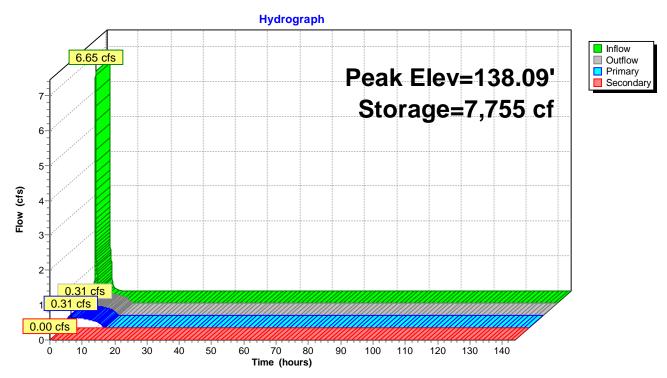
1=Culvert (Passes 0.00 cfs of 22.35 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

6=Orifice/Grate (Controls 0.00 cfs)

3=Culvert (Passes 0.31 cfs of 8.55 cfs potential flow)

4=Orifice/Grate (Orifice Controls 0.31 cfs @ 6.26 fps)


5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

7=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=136.28' TW=137.46' (Dynamic Tailwater)

-8=Culvert (Controls 0.00 cfs)

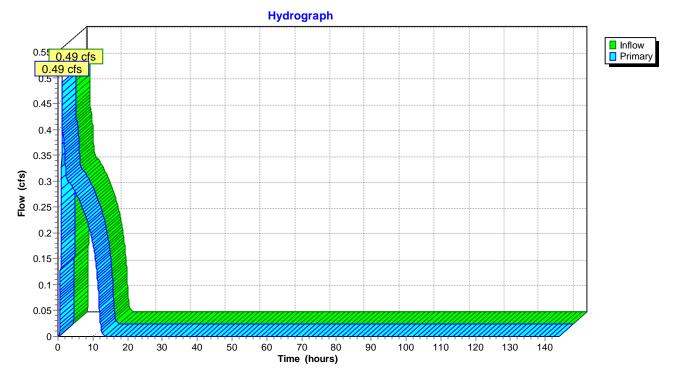
Pond PRE 2B: PRE WEST BASIN

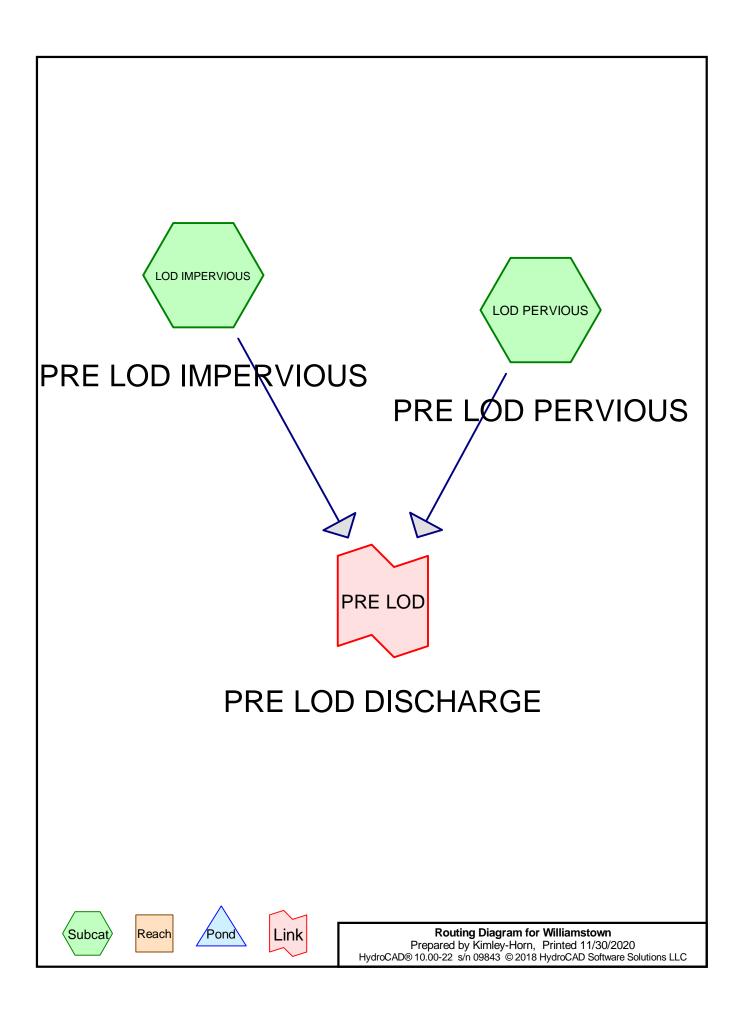
Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 59

Summary for Link PRE POI: PRE OUTFALL (POINT OF INVESTIGATION)


Inflow = 0.49 cfs @ 1.12 hrs, Volume= 0.233 af


Primary = 0.49 cfs @ 1.13 hrs, Volume= 0.233 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs

Fixed water surface Elevation= 136.31'

Link PRE POI: PRE OUTFALL (POINT OF INVESTIGATION)

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Printed 11/30/2020

Page 2

Area Listing (selected nodes)

Area (acres)	CN	Description (subcatchment-numbers)
0.230	39	>75% Grass cover, Good, HSG A (LOD PERVIOUS)
2.200	61	>75% Grass cover, Good, HSG B (LOD PERVIOUS)
0.490	80	>75% Grass cover, Good, HSG D (LOD PERVIOUS)
0.010	98	Paved parking, HSG A (LOD IMPERVIOUS)
0.040	98	Paved parking, HSG B (LOD IMPERVIOUS)
0.010	98	Paved parking, HSG D (LOD IMPERVIOUS)
1.190	30	Woods, Good, HSG A (LOD PERVIOUS)
1.370	55	Woods, Good, HSG B (LOD PERVIOUS)
5.540	54	TOTAL AREA

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC Printed 11/30/2020

Page 3

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
1.430	HSG A	LOD IMPERVIOUS, LOD PERVIOUS
3.610	HSG B	LOD IMPERVIOUS, LOD PERVIOUS
0.000	HSG C	
0.500	HSG D	LOD IMPERVIOUS, LOD PERVIOUS
0.000	Other	
5.540		TOTAL AREA

PRE-DEVELOPMENT LOD AREA Type III 24-hr 2-YR Rainfall=3.31" Printed 11/30/2020

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-144.00 hrs, dt=0.01 hrs, 14401 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Sim-Route method - Pond routing by Sim-Route method

Subcatchment LOD IMPERVIOUS: PRE LOD Runoff Area=0.060 ac 100.00% Impervious Runoff Depth=3.08" Flow Length=512' Tc=30.2 min CN=98 Runoff=0.11 cfs 0.015 af

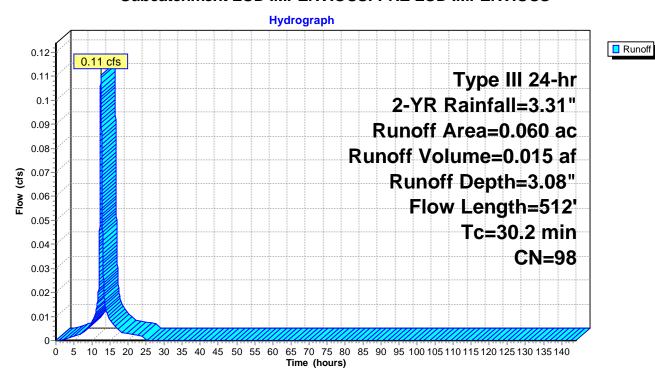
Subcatchment LOD PERVIOUS: PRE LOD

Runoff Area=5.480 ac 0.00% Impervious Runoff Depth=0.25"
Flow Length=512' Tc=30.2 min CN=54 Runoff=0.41 cfs 0.116 af

Link PRE LOD: PRE LOD DISCHARGEInflow=0.49 cfs 0.132 af
Primary=0.49 cfs 0.132 af

Total Runoff Area = 5.540 ac Runoff Volume = 0.132 af Average Runoff Depth = 0.29" 98.92% Pervious = 5.480 ac 1.08% Impervious = 0.060 ac

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC


Summary for Subcatchment LOD IMPERVIOUS: PRE LOD IMPERVIOUS

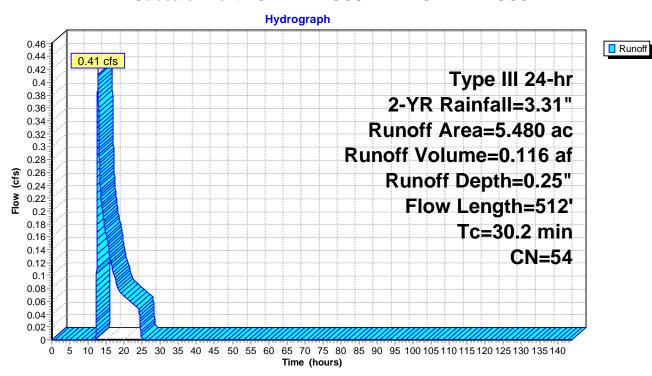
Runoff = 0.11 cfs @ 12.38 hrs, Volume= 0.015 af, Depth= 3.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.31"

	Area	(ac) C	N Desc	cription			
	0.	040 9	8 Pave	ed parking	, HSG B		
	0.	010	8 Pave	ed parking	, HSG D		
_	0.	010 9	8 Pave	ed parking	, HSG A		
	0.	060 9	8 Wei	ghted Aver	age		
	0.	060	100.	00% Impe	rvious Area		
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	17.1	100	0.0340	0.10		Sheet Flow, Sheet Flow thru Wooded Area	
	13.1	412	0.0110	0.52		Woods: Light underbrush n= 0.400 P2= 3.31" Shallow Concentrated Flow, Shallow Concentrated Sheet Flow Wo Woodland Kv= 5.0 fps	ЮС
	30.2	512	Total				

Subcatchment LOD IMPERVIOUS: PRE LOD IMPERVIOUS

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC


Summary for Subcatchment LOD PERVIOUS: PRE LOD PERVIOUS

Runoff = 0.41 cfs @ 12.69 hrs, Volume= 0.116 af, Depth= 0.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.31"

	Area (ac) C	N Des	cription			
	0.2	230 3	39 >75	% Grass co	over, Good,	HSG A	
	2.2	200 6	31 >75	% Grass co	over, Good,	HSG B	
	0.4	490 8	30 >75	% Grass co	over, Good,	HSG D	
	1.	190 3	0 Woo	ods, Good,	HSG A		
	1.3	370 5	55 Woo	ods, Good,	HSG B		
	5.4	480 5	54 Wei	ghted Avei	age		
	5.4	480	100	00% Pervi	ous Area		
	Тс	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	17.1	100	0.0340	0.10		Sheet Flow, Sheet Flow thru Wooded Area	
						Woods: Light underbrush n= 0.400 P2= 3.31"	
	13.1	412	0.0110	0.52		Shallow Concentrated Flow, Shallow Concentrated Sheet I	Flow Wood
_						Woodland Kv= 5.0 fps	
	30.2	512	Total				

Subcatchment LOD PERVIOUS: PRE LOD PERVIOUS

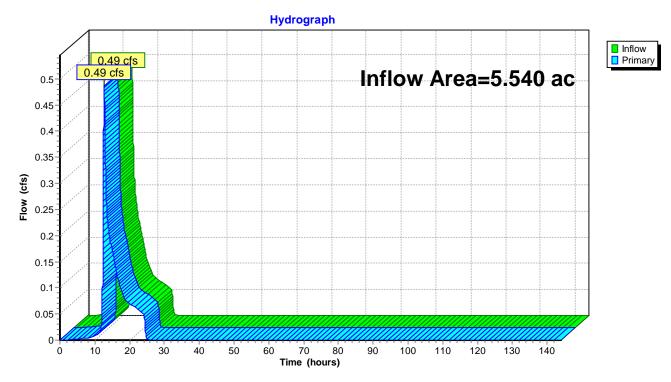
Williamstown

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Summary for Link PRE LOD: PRE LOD DISCHARGE

Inflow Area = 5.540 ac, 1.08% Impervious, Inflow Depth = 0.29" for 2-YR event


Inflow = 0.49 cfs @ 12.65 hrs, Volume= 0.132 af

Primary = 0.49 cfs @ 12.66 hrs, Volume= 0.132 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs

Fixed water surface Elevation= 136.31'

Link PRE LOD: PRE LOD DISCHARGE

PRE-DEVELOPMENT LOD AREA Type III 24-hr 10-YR Rainfall=5.11" Printed 11/30/2020

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 8

Time span=0.00-144.00 hrs, dt=0.01 hrs, 14401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Sim-Route method - Pond routing by Sim-Route method

Subcatchment LOD IMPERVIOUS: PRE LOD Runoff Area=0.060 ac 100.00% Impervious Runoff Depth=4.87" Flow Length=512' Tc=30.2 min CN=98 Runoff=0.17 cfs 0.024 af

Subcatchment LOD PERVIOUS: PRE LOD

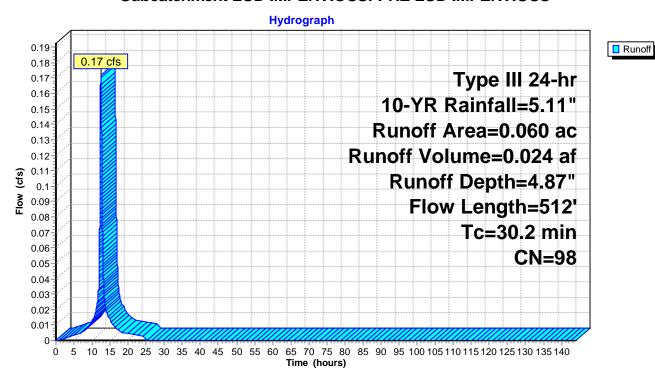
Runoff Area=5.480 ac 0.00% Impervious Runoff Depth=0.97"

Flow Length=512' Tc=30.2 min CN=54 Runoff=2.83 cfs 0.444 af

Link PRE LOD: PRE LOD DISCHARGEInflow=2.98 cfs 0.469 af Primary=2.98 cfs 0.469 af

Total Runoff Area = 5.540 ac Runoff Volume = 0.469 af Average Runoff Depth = 1.02" 98.92% Pervious = 5.480 ac 1.08% Impervious = 0.060 ac

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC


Summary for Subcatchment LOD IMPERVIOUS: PRE LOD IMPERVIOUS

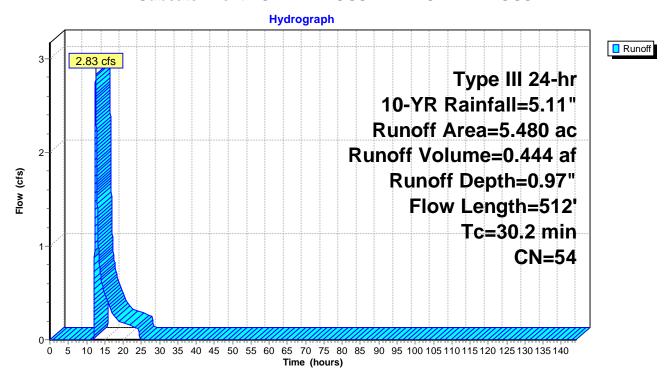
Runoff 0.17 cfs @ 12.38 hrs, Volume= 0.024 af, Depth= 4.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=5.11"

_	Area	(ac) C	N Desc	cription			
	0.	040 9	8 Pave	ed parking	, HSG B		
	0.	010	8 Pave	ed parking	, HSG D		
_	0.	010 9	8 Pave	ed parking	, HSG A		
	0.	060		ghted Aver			
	0.	060	100.	00% Impe	rvious Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	17.1	100	0.0340	0.10		Sheet Flow, Sheet Flow thru Wooded Area	
_	13.1	412	0.0110	0.52		Woods: Light underbrush n= 0.400 P2= 3.31" Shallow Concentrated Flow, Shallow Concentrated Sheet Flow W Woodland Kv= 5.0 fps	lood
	30.2	512	Total				

Subcatchment LOD IMPERVIOUS: PRE LOD IMPERVIOUS

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC


Summary for Subcatchment LOD PERVIOUS: PRE LOD PERVIOUS

Runoff = 2.83 cfs @ 12.52 hrs, Volume= 0.444 af, Depth= 0.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=5.11"

	Area (ac) C	N Des	cription			
	0.2	230 3	9 >75	% Grass c	over, Good,	HSG A	
	2.2	200 6	31 >75	% Grass c	over, Good,	HSG B	
	0.4	490 8	30 >75	% Grass c	over, Good,	HSG D	
	1.	190 3	0 Wo	ods, Good,	HSG A		
	1.3	370 5	55 Woo	ods, Good,	HSG B		
	5.4	480 5	54 Wei	ghted Avei	age		
	5.4	480	100	.00% Pervi	ous Area		
	_		01		•		
	Tc	Length	Slope		Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	17.1	100	0.0340	0.10		Sheet Flow, Sheet Flow thru Wooded Area	
						Woods: Light underbrush n= 0.400 P2= 3.31"	
	13.1	412	0.0110	0.52		Shallow Concentrated Flow, Shallow Concentrated Sheet F	low Wood
_						Woodland Kv= 5.0 fps	
	30.2	512	Total				

Subcatchment LOD PERVIOUS: PRE LOD PERVIOUS

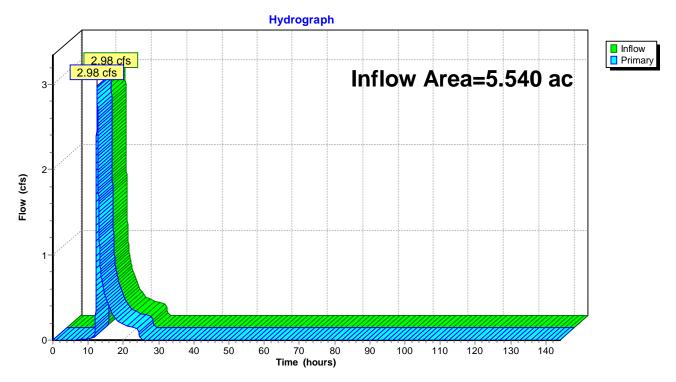
Williamstown

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Summary for Link PRE LOD: PRE LOD DISCHARGE

Inflow Area = 5.540 ac, 1.08% Impervious, Inflow Depth = 1.02" for 10-YR event


Inflow = 2.98 cfs @ 12.51 hrs, Volume= 0.469 af

Primary = 2.98 cfs @ 12.52 hrs, Volume= 0.469 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs

Fixed water surface Elevation= 136.31'

Link PRE LOD: PRE LOD DISCHARGE

PRE-DEVELOPMENT LOD AREA Type III 24-hr 100-YR Rainfall=8.69" Printed 11/30/2020

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 12

Time span=0.00-144.00 hrs, dt=0.01 hrs, 14401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Sim-Route method - Pond routing by Sim-Route method

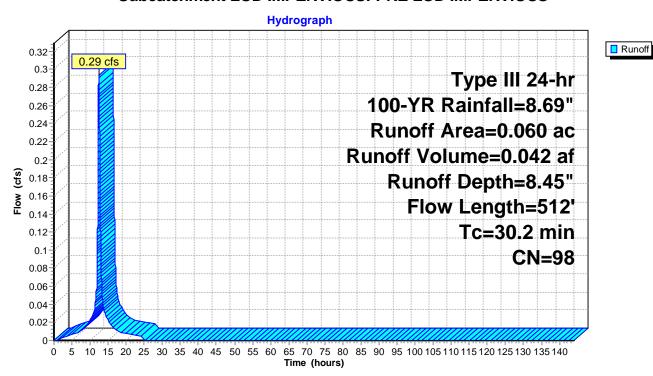
Subcatchment LOD IMPERVIOUS: PRE LOD Runoff Area=0.060 ac 100.00% Impervious Runoff Depth=8.45" Flow Length=512' Tc=30.2 min CN=98 Runoff=0.29 cfs 0.042 af

Subcatchment LOD PERVIOUS: PRE LOD

Runoff Area=5.480 ac 0.00% Impervious Runoff Depth=3.15"
Flow Length=512' Tc=30.2 min CN=54 Runoff=10.99 cfs 1.438 af

Link PRE LOD: PRE LOD DISCHARGEInflow=11.28 cfs 1.480 af
Primary=11.28 cfs 1.480 af

Total Runoff Area = 5.540 ac Runoff Volume = 1.480 af Average Runoff Depth = 3.21" 98.92% Pervious = 5.480 ac 1.08% Impervious = 0.060 ac


Summary for Subcatchment LOD IMPERVIOUS: PRE LOD IMPERVIOUS

Runoff = 0.29 cfs @ 12.38 hrs, Volume= 0.042 af, Depth= 8.45"

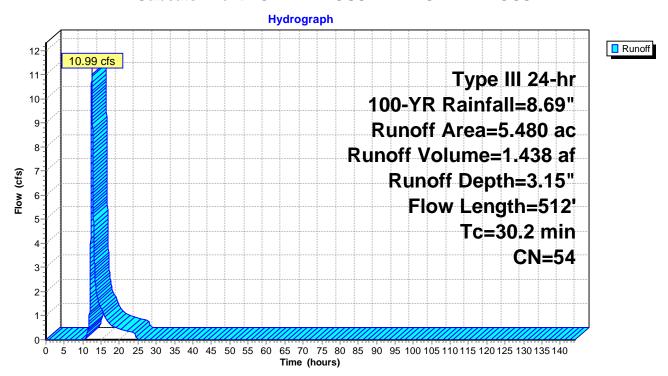
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=8.69"

_	Area	(ac) C	N Desc	cription			
	0.	040 9	8 Pave	ed parking	, HSG B		
	0.	010	8 Pave	ed parking	, HSG D		
_	0.	010 9	8 Pave	ed parking	, HSG A		
	0.	060		ghted Aver			
	0.	060	100.	00% Impe	rvious Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	17.1	100	0.0340	0.10		Sheet Flow, Sheet Flow thru Wooded Area	
_	13.1	412	0.0110	0.52		Woods: Light underbrush n= 0.400 P2= 3.31" Shallow Concentrated Flow, Shallow Concentrated Sheet Flow W Woodland Kv= 5.0 fps	lood
	30.2	512	Total				

Subcatchment LOD IMPERVIOUS: PRE LOD IMPERVIOUS

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 14


Summary for Subcatchment LOD PERVIOUS: PRE LOD PERVIOUS

Runoff = 10.99 cfs @ 12.45 hrs, Volume= 1.438 af, Depth= 3.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=8.69"

Area	(ac)	CN	Desc	ription			
0	.230	39	>75%	6 Grass co	over, Good,	HSG A	
2	2.200	61	>75%	6 Grass co	over, Good,	HSG B	
0	.490	80	>75%	6 Grass co	over, Good,	HSG D	
1	.190	30	Woo	ds, Good,	HSG A		
1	.370	55	Woo	ds, Good,	HSG B		
5	5.480	54	Weic	hted Aver	age		
5	5.480		_	00% Pervi	•		
Tc	Length	ı S	lope	Velocity	Capacity	Description	
(min)	(feet))	(ft/ft)	(ft/sec)	(cfs)	·	
17.1	100	0.0	0340	0.10		Sheet Flow, Sheet Flow thru Wooded Area	
						Woods: Light underbrush n= 0.400 P2= 3.31"	
13.1	412	2 0.0	0110	0.52		Shallow Concentrated Flow, Shallow Concentrated Sheet I	Flow Wood
						Woodland Kv= 5.0 fps	
30.2	512	2 To	tal			·	

Subcatchment LOD PERVIOUS: PRE LOD PERVIOUS

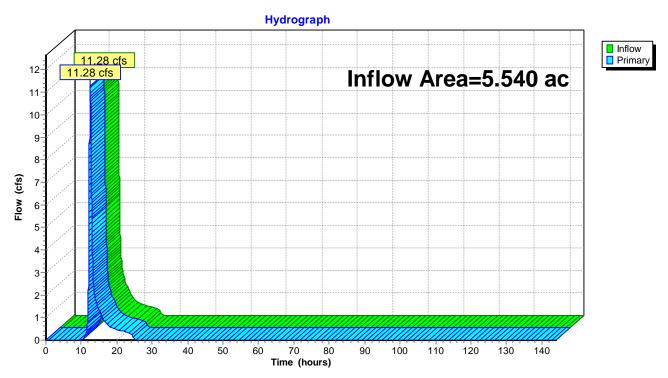
Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 15

Summary for Link PRE LOD: PRE LOD DISCHARGE

Inflow Area = 5.540 ac, 1.08% Impervious, Inflow Depth = 3.21" for 100-YR event


Inflow = 11.28 cfs @ 12.45 hrs, Volume= 1.480 af

Primary = 11.28 cfs @ 12.46 hrs, Volume= 1.480 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs

Fixed water surface Elevation= 136.31'

Link PRE LOD: PRE LOD DISCHARGE

PRE-DEVELOPMENT LOD AREA
NJ DEP 2-hr DEP 2-HR Rainfall=1.25"
Printed 11/30/2020

Prepared by Kimley-Horn
HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 16

Time span=0.00-144.00 hrs, dt=0.01 hrs, 14401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Sim-Route method - Pond routing by Sim-Route method

Subcatchment LOD IMPERVIOUS: PRE LOD Runoff Area=0.060 ac 100.00% Impervious Runoff Depth=1.03" Flow Length=512' Tc=30.2 min CN=98 Runoff=0.09 cfs 0.005 af

Subcatchment LOD PERVIOUS: PRE LOD

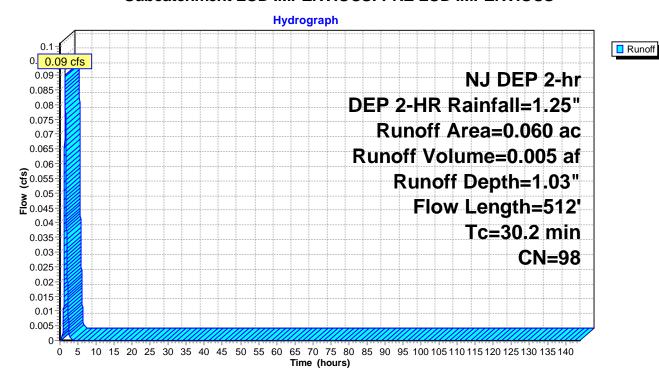
Runoff Area=5.480 ac 0.00% Impervious Runoff Depth=0.00"
Flow Length=512' Tc=30.2 min CN=54 Runoff=0.00 cfs 0.000 af

Link PRE LOD: PRE LOD DISCHARGEInflow=0.09 cfs 0.005 af
Primary=0.09 cfs 0.005 af

Total Runoff Area = 5.540 ac Runoff Volume = 0.005 af Average Runoff Depth = 0.01" 98.92% Pervious = 5.480 ac 1.08% Impervious = 0.060 ac

Page 17

Printed 11/30/2020


Summary for Subcatchment LOD IMPERVIOUS: PRE LOD IMPERVIOUS

Runoff 0.09 cfs @ 0.005 af, Depth= 1.03" 1.38 hrs, Volume=

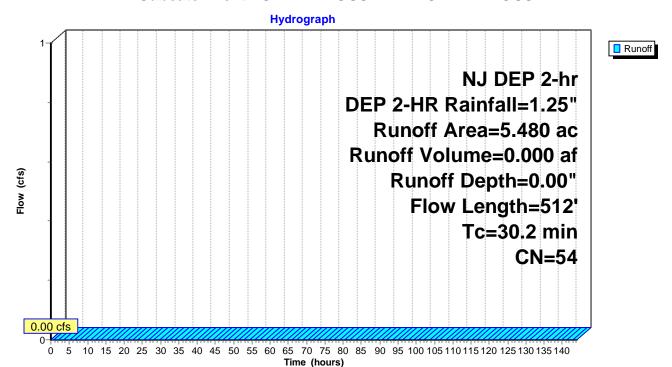
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs NJ DEP 2-hr DEP 2-HR Rainfall=1.25"

_	Area	(ac) C	N Desc	cription			
	0.	040 9	8 Pave	ed parking	, HSG B		
	0.	010	8 Pave	ed parking	, HSG D		
_	0.	010 9	8 Pave	ed parking	, HSG A		
	0.	060		ghted Aver			
	0.	060	100.	00% Impe	rvious Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	17.1	100	0.0340	0.10		Sheet Flow, Sheet Flow thru Wooded Area	
_	13.1	412	0.0110	0.52		Woods: Light underbrush n= 0.400 P2= 3.31" Shallow Concentrated Flow, Shallow Concentrated Sheet Flow W Woodland Kv= 5.0 fps	lood
	30.2	512	Total				

Subcatchment LOD IMPERVIOUS: PRE LOD IMPERVIOUS

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 18


Summary for Subcatchment LOD PERVIOUS: PRE LOD PERVIOUS

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs NJ DEP 2-hr DEP 2-HR Rainfall=1.25"

_	Area (ac) C	N De	scription			
	0.2	230 3	39 >7	5% Grass c	over, Good,	, HSG A	
	2.2	200 (31 >7	5% Grass c	over, Good,	, HSG B	
	0.4	190 8	30 >7	5% Grass c	over, Good,	, HSG D	
	1.1	190 3	30 W	oods, Good,	HSG A		
	1.3	370	55 W	oods, Good,	HSG B		
	5.4	180	54 W	eighted Ave	rage		
	5.4	180	10	0.00% Pervi	ious Area		
	Тс	Length	Slop	•	Capacity	Description	
_	(min)	(feet)	(ft/f	(ft/sec)	(cfs)		
	17.1	100	0.034	0.10		Sheet Flow, Sheet Flow thru Wooded Area	
						Woods: Light underbrush n= 0.400 P2= 3.31"	
	13.1	412	0.011	0.52		Shallow Concentrated Flow, Shallow Concentrated Sheet Flo	ow Wood
_						Woodland Kv= 5.0 fps	
	30.2	512	Total				

Subcatchment LOD PERVIOUS: PRE LOD PERVIOUS

Prepared by Kimley-Horn

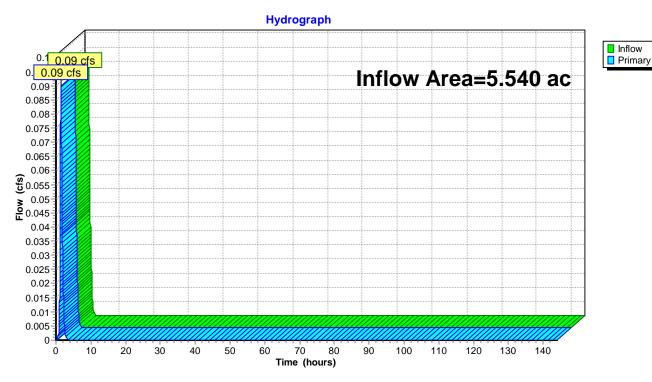
HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 19

Printed 11/30/2020

Summary for Link PRE LOD: PRE LOD DISCHARGE

Inflow Area = 5.540 ac, 1.08% Impervious, Inflow Depth = 0.01" for DEP 2-HR event

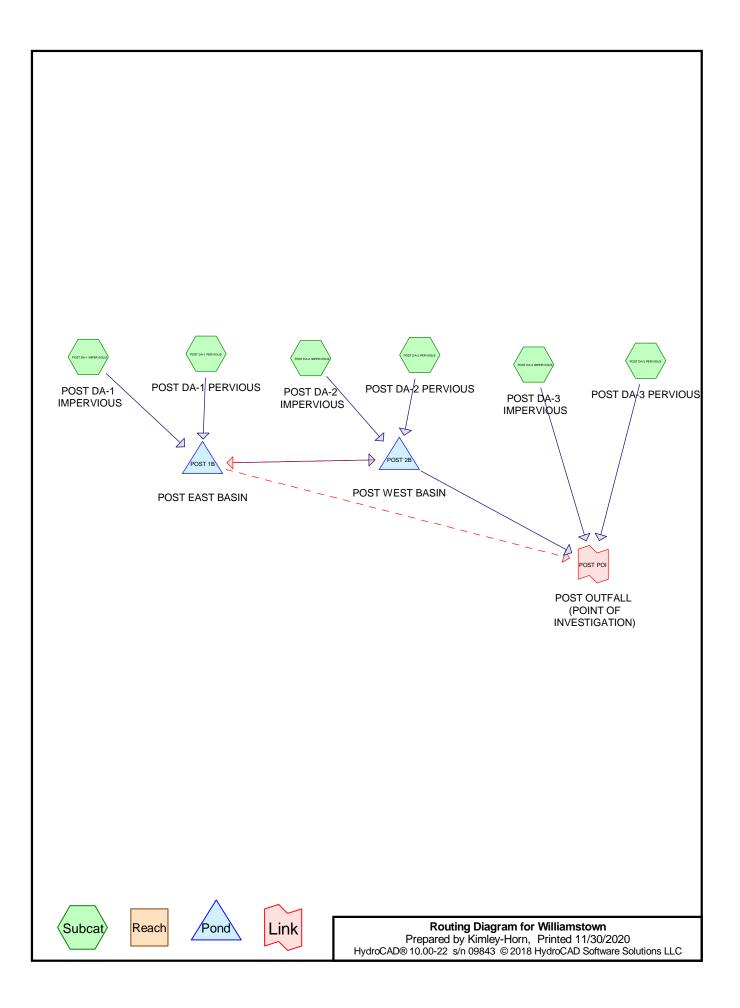

Inflow = 0.09 cfs @ 1.38 hrs, Volume= 0.005 af

Primary = 0.09 cfs @ 1.39 hrs, Volume= 0.005 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs

Fixed water surface Elevation= 136.31'

Link PRE LOD: PRE LOD DISCHARGE



Stormwater Management Report

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ

APPENDIX C - HYDROCAD ANALYSIS – PROPOSED

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC Printed 11/30/2020

Page 2

Area Listing (selected nodes)

Area (acres)	CN	Description (subcatchment-numbers)
1.510	39	>75% Grass cover, Good, HSG A (POST DA-1 PERVIOUS, POST DA-2 PERVIOUS)
2.240	61	>75% Grass cover, Good, HSG B (POST DA-1 PERVIOUS, POST DA-2 PERVIOUS,
		POST DA-3 PERVIOUS)
0.900	80	>75% Grass cover, Good, HSG D (POST DA-2 PERVIOUS, POST DA-3 PERVIOUS)
2.680	98	Paved parking, HSG A (POST DA-1 IMPERVIOUS, POST DA-2 IMPERVIOUS)
2.450	98	Paved parking, HSG B (POST DA-1 IMPERVIOUS, POST DA-2 IMPERVIOUS, POST
		DA-3 IMPERVIOUS)
0.080	98	Paved parking, HSG D (POST DA-2 IMPERVIOUS, POST DA-3 IMPERVIOUS)
6.400	30	Woods, Good, HSG A (POST DA-1 PERVIOUS, POST DA-2 PERVIOUS)
1.620	55	Woods, Good, HSG B (POST DA-1 PERVIOUS, POST DA-2 PERVIOUS)
17.880	59	TOTAL AREA

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC Printed 11/30/2020

Page 3

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
10.590	HSG A	POST DA-1 IMPERVIOUS, POST DA-1 PERVIOUS, POST DA-2 IMPERVIOUS,
		POST DA-2 PERVIOUS
6.310	HSG B	POST DA-1 IMPERVIOUS, POST DA-1 PERVIOUS, POST DA-2 IMPERVIOUS,
		POST DA-2 PERVIOUS, POST DA-3 IMPERVIOUS, POST DA-3 PERVIOUS
0.000	HSG C	
0.980	HSG D	POST DA-2 IMPERVIOUS, POST DA-2 PERVIOUS, POST DA-3 IMPERVIOUS,
		POST DA-3 PERVIOUS
0.000	Other	
17.880)	TOTAL AREA

POST-DEVELOPMENT CONDITIONS

Type III 24-hr 2-YR Rainfall=3.31"

Printed 11/30/2020

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-144.00 hrs, dt=0.01 hrs, 14401 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Sim-Route method - Pond routing by Sim-Route method

Subcatchment POST DA-1 IMPERVIOUS: Runoff Area=1.010 ac 100.00% Impervious Runoff Depth=3.08"

Tc=6.0 min CN=98 Runoff=3.25 cfs 0.259 af

Subcatchment POST DA-1 PERVIOUS: POST Runoff Area=6.950 ac 0.00% Impervious Runoff Depth=0.01"

Flow Length=1,440' Tc=60.4 min CN=40 Runoff=0.01 cfs 0.004 af

Subcatchment POST DA-2 IMPERVIOUS: Runoff Area=4.120 ac 100.00% Impervious Runoff Depth=3.08"

Tc=6.0 min CN=98 Runoff=13.25 cfs 1.056 af

Subcatchment POST DA-2 PERVIOUS: POST Runoff Area=5.100 ac 0.00% Impervious Runoff Depth=0.04"

Flow Length=1,097' Tc=24.2 min CN=44 Runoff=0.03 cfs 0.018 af

Subcatchment POST DA-3 IMPERVIOUS: Runoff Area=0.080 ac 100.00% Impervious Runoff Depth=3.08"

Tc=6.0 min CN=98 Runoff=0.26 cfs 0.021 af

Subcatchment POST DA-3 PERVIOUS: POST Runoff Area=0.620 ac 0.00% Impervious Runoff Depth=1.05"

Flow Length=185' Tc=16.9 min CN=73 Runoff=0.52 cfs 0.054 af

Pond POST 1B: POST EAST BASIN Peak Elev=138.22' Storage=5,835 cf Inflow=3.25 cfs 0.263 af

Primary=0.29 cfs 0.260 af Secondary=0.00 cfs 0.000 af Outflow=0.29 cfs 0.260 af

Pond POST 2B: POST WEST BASIN Peak Elev=138.07' Storage=48,421 cf Inflow=13.47 cfs 1.335 af

Primary=0.17 cfs 0.558 af Secondary=0.00 cfs 0.000 af Outflow=0.17 cfs 0.558 af

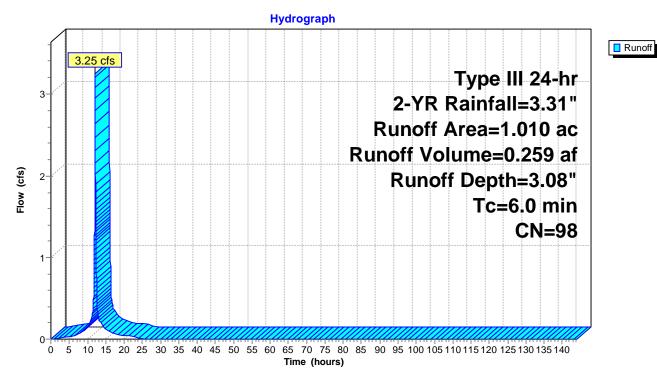
Link POST POI: POST OUTFALL (POINT OF INVESTIGATION) Inflow=0.64 cfs 0.633 af

Primary=0.64 cfs 0.633 af

Total Runoff Area = 17.880 ac Runoff Volume = 1.412 af Average Runoff Depth = 0.95" 70.86% Pervious = 12.670 ac 29.14% Impervious = 5.210 ac

Page 5

Summary for Subcatchment POST DA-1 IMPERVIOUS: POST DA-1 IMPERVIOUS


Runoff 3.25 cfs @ 12.08 hrs, Volume= 0.259 af, Depth= 3.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.31"

	Area	(ac)	CN	Desc	cription		
	0.	670	98	Pave	ed parking	, HSG A	
	0.	340	98	Pave	ed parking	, HSG B	
	1.	010	98	Weig	hted Aver	age	
	1.	010		100.	00% Impe	rvious Area	1
	Tc	Leng	jth	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
•	6.0						Direct Entry, Directly Connected Impervious Area

Direct Entry, Directly Connected Impervious Area

Subcatchment POST DA-1 IMPERVIOUS: POST DA-1 IMPERVIOUS

Prepared by Kimley-Horn

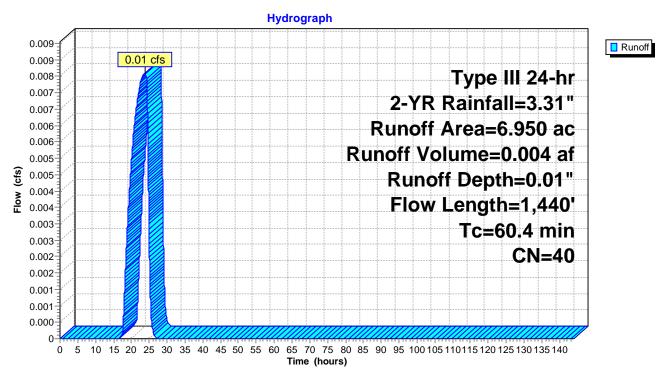
HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment POST DA-1 PERVIOUS: POST DA-1 PERVIOUS

Runoff = 0.01 cfs @ 23.82 hrs, Volume= 0.004 af, Depth= 0.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.31"


		, , _					
_	Area ((ac) C	N Desc	cription			
	0.0	610 3	39 >75%	% Grass co	over, Good,	, HSG A	
	0.	760 6	31 >75%	% Grass co	over, Good,	, HSG B	
	4.0	000 3		ds, Good,	, ,	,	
	1.			ds, Good,			
_				ghted Aver			
		950	•	00% Pervi	•		•
	0.	300	100.	00/01 01 1	503 / 11 Ca		•
	Tc	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description	
_	40.2	100	0.0040	0.04	(0.0)	Sheet Flow, Sheet Flow thru Wooded Area	
	40.2	100	0.0040	0.04		Woods: Light underbrush n= 0.400 P2= 3.31"	
	12.0	EE7	0.0400	0.67		•	, Wood
	13.8	557	0.0180	0.67		Shallow Concentrated Flow, Shallow Concentrated Sheet Flow	VVOOG
	0.0	055	0.0000	4.00		Woodland Kv= 5.0 fps	
	6.0	655	0.0080	1.82		Shallow Concentrated Flow, Shallow Concentrated Sheet Flow	Paved
						Paved Kv= 20.3 fps	
	0.4	128	0.0050	5.09	16.00	Pipe Channel, RCP_Round 24"	
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'	
						n= 0.013	
	60.4	1,440	Total				

Prepared by Kimley-Horn

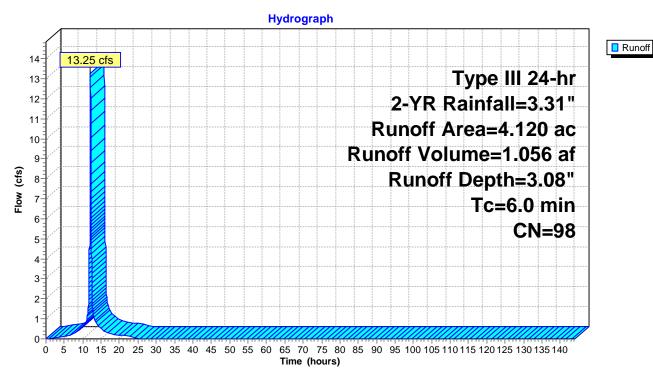
HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 7

Subcatchment POST DA-1 PERVIOUS: POST DA-1 PERVIOUS

Page 8

Summary for Subcatchment POST DA-2 IMPERVIOUS: POST DA-2 IMPERVIOUS


Runoff 13.25 cfs @ 12.08 hrs, Volume= 1.056 af, Depth= 3.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.31"

_	Area ((ac)	CN	Desc	ription		
	2.	010	98	Pave	ed parking	, HSG A	
	2.	090	98	Pave	ed parking	, HSG B	
_	0.	020	98	Pave	ed parking	, HSG D	
	4.	120	98	Weig	hted Aver	age	
	4.	120		100.0	00% Impe	rvious Area	
	Tc	Leng	th	Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry, Directly Connected Impervious Area

Direct Entry, Directly Connected Impervious Area

Subcatchment POST DA-2 IMPERVIOUS: POST DA-2 IMPERVIOUS

24.2

1,097 Total

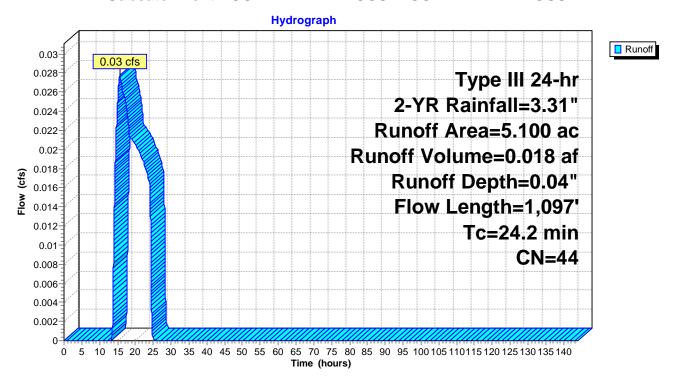
Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 9

Summary for Subcatchment POST DA-2 PERVIOUS: POST DA-2 PERVIOUS

Runoff = 0.03 cfs @ 15.68 hrs, Volume= 0.018 af, Depth= 0.04"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.31"

		<i>,</i> , ,					
_	Area (<u>(ac) C</u>	N Des	cription			
	0.9	900 3	39 >75	% Grass co	over, Good,	, HSG A	
	1.	260 6	51 >75	% Grass co	over, Good,	, HSG B	
	0./	500 8	30 >75	% Grass co	over, Good,	, HSG D	
	2.	400 3	30 Wo	ods, Good,	HSG A	•	
	0./	040 5	55 Wo	ods, Good,	HSG B		
	5.	100 4	14 Wei	ighted Aver	age		
	5.	100		.00% Pervi			
	Tc	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)		(cfs)	·	
_	11.8	100	0.0850	0.14		Sheet Flow, Sheet Flow thru Wooded Area	
	• • • •		0.0222			Woods: Light underbrush n= 0.400 P2= 3.31"	
	9.4	310	0.0120	0.55		Shallow Concentrated Flow, Shallow Concentrated Sheet Flo	ow Wood
			•			Woodland Kv= 5.0 fps	
	2.0	310	0.0170	2.65		Shallow Concentrated Flow, Shallow Concentrated Sheet Flo	ow Paved
		-	•••			Paved Kv= 20.3 fps	
	1.0	377	0.0080	6.44	20.23	Pipe Channel, RCP_Round 24"	
	-	-		-	-	24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'	
						n= 0.013	

Page 10

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

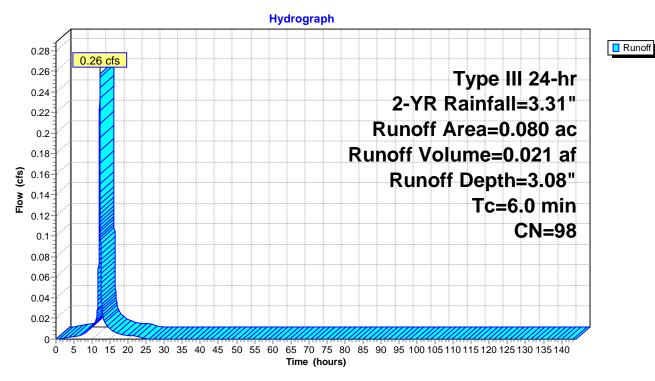
Subcatchment POST DA-2 PERVIOUS: POST DA-2 PERVIOUS

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 11

Summary for Subcatchment POST DA-3 IMPERVIOUS: POST DA-3 IMPERVIOUS

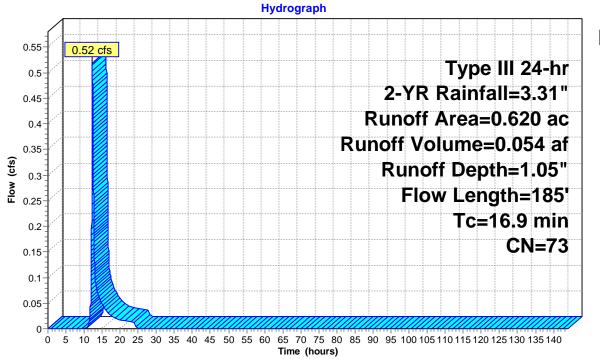

Runoff 0.26 cfs @ 12.08 hrs, Volume= 0.021 af, Depth= 3.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.31"

	Area	(ac)	CN	Desc	cription			
	0.	020	98	Pave	ed parking	, HSG B		
	0.	060	98	Pave	ed parking	, HSG D		
0.080 98 Weighted Average								
	0.	080		100.	00% Impe	rvious Area		
	Tc	Leng	jth	Slope	Velocity	Capacity	Description	
((min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		
	6.0						Direct Entry, Directly Connected Impervious Area	

Direct Entry, Directly Connected Impervious Area

Subcatchment POST DA-3 IMPERVIOUS: POST DA-3 IMPERVIOUS


Summary for Subcatchment POST DA-3 PERVIOUS: POST DA-3 PERVIOUS

Runoff = 0.52 cfs @ 12.26 hrs, Volume= 0.054 af, Depth= 1.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.31"

_	Area	(ac) C	N Desc	cription						
	0.	220 6	51 >759	% Grass co	over, Good,	HSG B				
_	0.400 80 >75% Grass cover, Good, HSG D									
	0.	620 7	73 Wei	ghted Avei	rage					
	0.	620	100.	00% Pervi	ous Area					
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	15.7	100	0.0150	0.11		Sheet Flow,				
						Grass: Dense n= 0.240 P2= 3.31"				
	1.2	85	0.0280	1.17		Shallow Concentrated Flow,				
_						Short Grass Pasture Kv= 7.0 fps				
	16.9	185	Total							

Subcatchment POST DA-3 PERVIOUS: POST DA-3 PERVIOUS

Page 12

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 13

Summary for Pond POST 1B: POST EAST BASIN

Inflow = 3.25 cfs @ 12.08 hrs, Volume= 0.263 af
Outflow = 0.29 cfs @ 12.97 hrs, Volume= 0.260 af, Atten= 91%, Lag= 52.9 min
Primary = 0.29 cfs @ 12.97 hrs, Volume= 0.260 af
Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Sim-Route method, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Peak Elev= 138.22' @ 12.97 hrs Surf.Area= 12,576 sf Storage= 5,835 cf Flood Elev= 140.88' Surf.Area= 17,579 sf Storage= 44,667 cf

Plug-Flow detention time= 620.8 min calculated for 0.260 af (99% of inflow)

Avail.Storage Storage Description

Center-of-Mass det. time= 613.6 min (1,377.1 - 763.5)

Invert

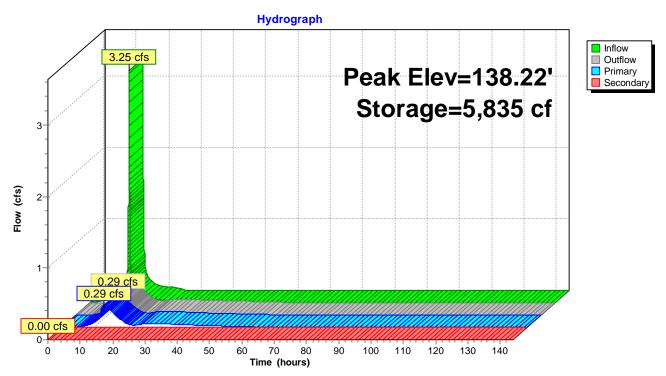
Volume

#1	137.46'	55,76	66 cf Custom S	Stage Data (Prisn	natic) Listed below (Recalc)
Elevatio		ırf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
137.4	l 6	13	0	0	
137.5	50	200	4	4	
138.0	00	12,293	3,123	3,128	
139.0	00	13,592	12,943	16,070	
140.0	00	14,964	14,278	30,348	
141.0	00	17,936	16,450	46,798	
141.5	50	17,936	8,968	55,766	
Device	Routing	Invert	Outlet Devices		
#1	Primary	137.46'	24.0" Round R	RCP_Round 24"	
	_		L= 76.0' RCP,	, groove end proj	ecting, Ke= 0.200
			Inlet / Outlet Inv	vert= 137.46' / 13	37.09' S= 0.0049 '/' Cc= 0.900
			n= 0.013, Flow		
#2	Device 1	137.59'	4.0" Vert. Orific	ce/Grate C= 0.0	600
#3	Device 1	139.46'	•	•	sted Rectangular Weir
			2 End Contract		
#4	Device 1	141.26'	48.0" x 48.0" H	oriz. Orifice/Gra	te C= 0.600
				flow at low head	
#5	Secondary	140.50'			nd-Crested Rectangular Weir
			` ,		80 1.00 1.20 1.40 1.60
			Coef. (English)	2.49 2.56 2.70	2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=0.29 cfs @ 12.97 hrs HW=138.22' TW=137.55' (Dynamic Tailwater) 1=RCP Round 24" (Passes 0.29 cfs of 2.60 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.29 cfs @ 3.27 fps)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)


4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=137.46' TW=136.31' (Dynamic Tailwater) **5=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 14

Pond POST 1B: POST EAST BASIN

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 15

Summary for Pond POST 2B: POST WEST BASIN

Inflow = 13.47 cfs @ 12.08 hrs, Volume= 1.335 af

Outflow = 0.17 cfs @ 24.03 hrs, Volume= 0.558 af, Atten= 99%, Lag= 716.5 min

Primary = 0.17 cfs @ 24.03 hrs, Volume= 0.558 af

Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Sim-Route method, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Peak Elev= 138.07' @ 24.03 hrs Surf.Area= 25,475 sf Storage= 48,421 cf

Plug-Flow detention time= 1,833.8 min calculated for 0.558 af (42% of inflow) Center-of-Mass det. time= 1,580.8 min (2,462.6 - 881.7)

Volume	Inv	ert Avail.Sto	rage Storage	e Description
#1	136.0	00' 133,4	66 cf Custon	m Stage Data (Prismatic) Listed below (Recalc)
Flanatia		Court Amara	las Otana	Comp. Others
Elevation		Surf.Area	Inc.Store	Cum.Store
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)
136.0	00	21,387	0	0
137.0	00	23,291	22,339	22,339
138.0	00	25,304	24,298	46,637
139.0	00	27,739	26,522	73,158
140.0	00	30,143	28,941	102,099
141.0	00	32,590	31,367	133,466
Device	Routing	Invert	Outlet Devic	es
#1	Primary	135.48'	24.0" Round	d Culvert L= 15.0' RCP, groove end projecting, Ke= 0.200
	-		Inlet / Outlet	: Invert= 135.48' / 135.05' S= 0.0287 '/' Cc= 0.900
			n= 0.013, FI	low Area= 3.14 sf
#2	Device '	137.45		rifice/Grate C= 0.600
#3	Device '	138.83	4.0' long x 1	1.85' rise Sharp-Crested Rectangular Weir

2 End Contraction(s)

48.0" x 48.0" Horiz. Orifice/Grate C= 0.600

Limited to weir flow at low heads

45 Secondary

137.46'

2 End Contraction(s)

48.0" x 48.0" Horiz. Orifice/Grate C= 0.600

Limited to weir flow at low heads

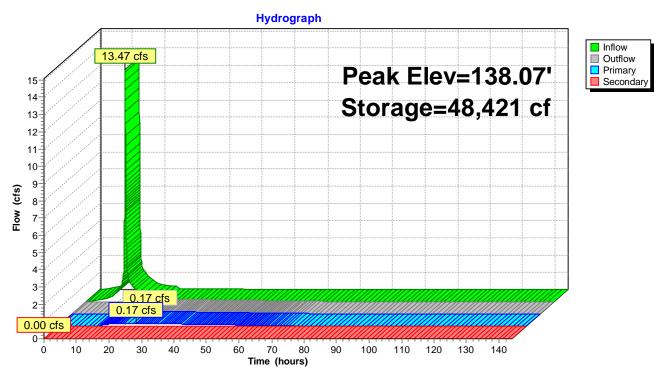
24.0" Round Culvert L= 76.0' RCP, groove end projecting, Ke= 0.200

Inlet / Outlet Invert= 137.09' / 137.46' S= -0.0049 '/' Cc= 0.900

n= 0.013, Flow Area= 3.14 sf

Primary OutFlow Max=0.17 cfs @ 24.03 hrs HW=138.07' TW=136.31' (Dynamic Tailwater)

1=Culvert (Passes 0.17 cfs of 22.24 cfs potential flow)


—2=Orifice/Grate (Orifice Controls 0.17 cfs @ 3.39 fps)
—3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=136.00' TW=137.46' (Dynamic Tailwater) -5=Culvert (Controls 0.00 cfs)

Page 16

Pond POST 2B: POST WEST BASIN

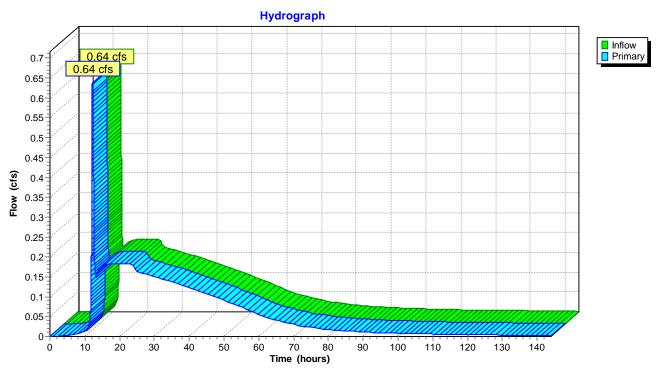
Page 17

Williamstown

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Summary for Link POST POI: POST OUTFALL (POINT OF INVESTIGATION)


Inflow = 0.64 cfs @ 12.23 hrs, Volume= 0.633 af

Primary = 0.64 cfs @ 12.24 hrs, Volume= 0.633 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs

Fixed water surface Elevation= 136.31'

Link POST POI: POST OUTFALL (POINT OF INVESTIGATION)

POST-DEVELOPMENT CONDITIONS

Type III 24-hr 10-YR Rainfall=5.11"

Printed 11/30/2020

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 18

Time span=0.00-144.00 hrs, dt=0.01 hrs, 14401 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Sim-Route method - Pond routing by Sim-Route method

Subcatchment POST DA-1 IMPERVIOUS: Runoff Area=1.010 ac 100.00% Impervious Runoff Depth=4.87"

Tc=6.0 min CN=98 Runoff=5.05 cfs 0.410 af

Subcatchment POST DA-1 PERVIOUS: POST Runoff Area=6.950 ac 0.00% Impervious Runoff Depth=0.26" Flow Length=1,440' Tc=60.4 min CN=40 Runoff=0.28 cfs 0.151 af

Subcatchment POST DA-2 IMPERVIOUS: Runoff Area=4.120 ac 100.00% Impervious Runoff Depth=4.87"

Tc=6.0 min CN=98 Runoff=20.60 cfs 1.673 af

Subcatchment POST DA-2 PERVIOUS: POST Runoff Area=5.100 ac 0.00% Impervious Runoff Depth=0.43"

Flow Length=1,097' Tc=24.2 min CN=44 Runoff=0.76 cfs 0.183 af

Subcatchment POST DA-3 IMPERVIOUS: Runoff Area=0.080 ac 100.00% Impervious Runoff Depth=4.87"

Tc=6.0 min CN=98 Runoff=0.40 cfs 0.032 af

Subcatchment POST DA-3 PERVIOUS: POST Runoff Area=0.620 ac 0.00% Impervious Runoff Depth=2.37" Flow Length=185' Tc=16.9 min CN=73 Runoff=1.23 cfs 0.122 af

Pond POST 1B: POST EAST BASIN Peak Elev=139.03' Storage=16,466 cf Inflow=5.05 cfs 0.561 af

Primary=0.31 cfs 0.558 af Secondary=0.00 cfs 0.000 af Outflow=0.31 cfs 0.558 af

Pond POST 2B: POST WEST BASIN Peak Elev=138.91' Storage=70,777 cf Inflow=20.89 cfs 2.414 af

Primary=0.59 cfs 1.623 af Secondary=0.00 cfs 0.000 af Outflow=0.59 cfs 1.623 af

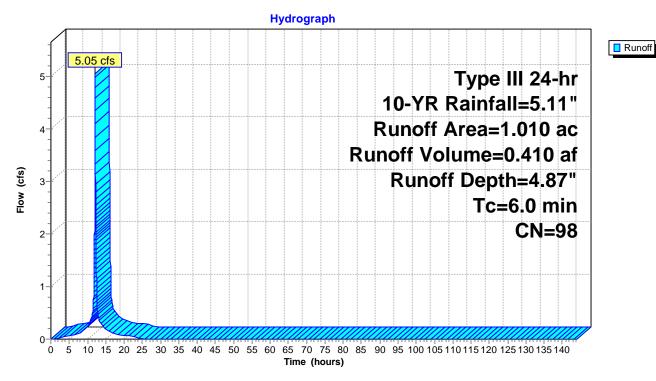
Link POST POI: POST OUTFALL (POINT OF INVESTIGATION) Inflow=1.56 cfs 1.778 af

Primary=1.56 cfs 1.778 af

Total Runoff Area = 17.880 ac Runoff Volume = 2.571 af Average Runoff Depth = 1.73" 70.86% Pervious = 12.670 ac 29.14% Impervious = 5.210 ac

Page 19

Summary for Subcatchment POST DA-1 IMPERVIOUS: POST DA-1 IMPERVIOUS


Runoff 5.05 cfs @ 12.08 hrs, Volume= 0.410 af, Depth= 4.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=5.11"

Area	(ac)	CN	Desc	cription		
0.	670	98	Pave	ed parking	, HSG A	
 0.	340	98	Pave	ed parking,	, HSG B	
1.	010	98	Weig	hted Aver	age	
1.	010		100.	00% Impe	rvious Area	l
_						
Tc	Leng	ıth	Slope	Velocity	Capacity	Description
 (min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
6.0						Direct Entry, Directly Connected Impervious Area

Direct Entry, Directly Connected Impervious Area

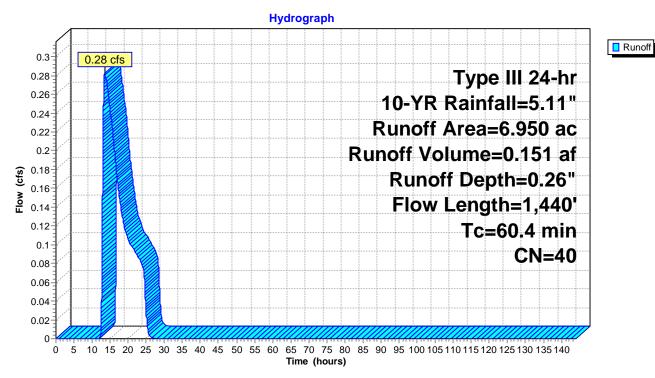
Subcatchment POST DA-1 IMPERVIOUS: POST DA-1 IMPERVIOUS

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 20

Summary for Subcatchment POST DA-1 PERVIOUS: POST DA-1 PERVIOUS


Runoff = 0.28 cfs @ 13.49 hrs, Volume= 0.151 af, Depth= 0.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=5.11"

Area	(ac) C	N Des	cription			
0	.610 3	39 >759	% Grass co	over, Good,	, HSG A	
0	.760 6			over, Good		
			ds, Good,		,	
			ds, Good,			
			ghted Avei		-	
	.950 - .950	,	00% Pervi			
Ü	.930	100.	00 % F C IVI	ous Alea		
To	Longth	Slopo	Volocity	Capacity	Description	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description	
(min)				(cfs)		
40.2	100	0.0040	0.04		Sheet Flow, Sheet Flow thru Wooded Area	
					Woods: Light underbrush n= 0.400 P2= 3.31"	_
13.8	557	0.0180	0.67		Shallow Concentrated Flow, Shallow Concentrated Sheet Flow We	000
					Woodland Kv= 5.0 fps	
6.0	655	0.0080	1.82		Shallow Concentrated Flow, Shallow Concentrated Sheet Flow Pa	ave
					Paved Kv= 20.3 fps	
0.4	128	0.0050	5.09	16.00	Pipe Channel, RCP_Round 24"	
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'	
					n= 0.013	
60.4	1,440	Total				

Page 21

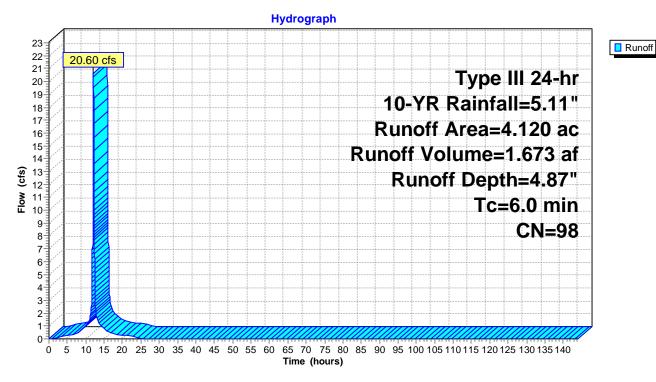
Subcatchment POST DA-1 PERVIOUS: POST DA-1 PERVIOUS

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 22

Summary for Subcatchment POST DA-2 IMPERVIOUS: POST DA-2 IMPERVIOUS


Runoff 20.60 cfs @ 12.08 hrs, Volume= 1.673 af, Depth= 4.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=5.11"

Area ((ac)	CN	Desc	ription		
2.	010	98	Pave	ed parking	HSG A	
2.	090	98	Pave	ed parking	HSG B	
 0.	020	98	Pave	ed parking	HSG D	
4.	120	98	Weig	hted Aver	age	
4.	120		100.0	00% Impe	rvious Area	
 Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry, Directly Connected Impervious Area

Direct Entry, Directly Connected Impervious Area

Subcatchment POST DA-2 IMPERVIOUS: POST DA-2 IMPERVIOUS

24.2

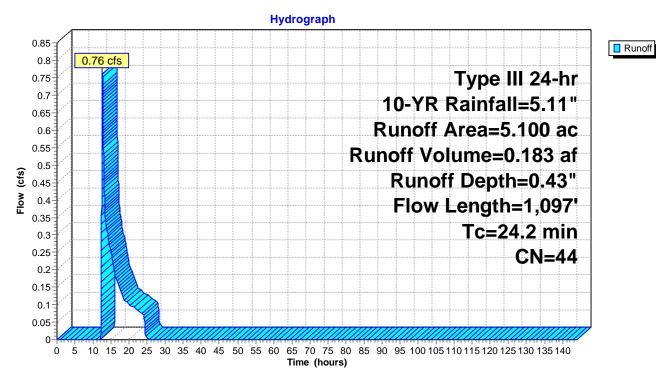
1,097 Total

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 23

Summary for Subcatchment POST DA-2 PERVIOUS: POST DA-2 PERVIOUS


Runoff = 0.76 cfs @ 12.59 hrs, Volume= 0.183 af, Depth= 0.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=5.11"

Area (ac) C	N Desc	cription			
0.9	900 3	39 >75%	% Grass co	ver, Good,	HSG A	
1.2	260 6	51 >75%	% Grass co	over, Good,	HSG B	
0.5	500 8				HSG D	
0.0	040 5					
5.	100	100.	00% Pervi	ous Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
11.8	100	0.0850	0.14	` '	Sheet Flow, Sheet Flow thru Wooded Area	
					Woods: Light underbrush n= 0.400 P2= 3.31"	
9.4	310	0.0120	0.55		Shallow Concentrated Flow, Shallow Concentrated Sheet F	Flow Wood
2.0	310	0.0170	2.65		•	-low Paved
1.0	377	0.0080	6.44	20.23	Pipe Channel, RCP_Round 24" 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'	
	0.9 1.2 0.9 2.4 0.0 5.7 7c (min) 11.8 9.4 2.0	0.900 3 1.260 6 0.500 8 2.400 3 0.040 5 5.100 4 5.100 Tc Length (min) (feet) 11.8 100 9.4 310 2.0 310	0.900 39 >75% 1.260 61 >75% 0.500 80 >75% 2.400 30 Woo 0.040 55 Woo 5.100 44 Weig 5.100 100.0 Tc Length Slope (min) (feet) (ft/ft) 11.8 100 0.0850 9.4 310 0.0120 2.0 310 0.0170	0.900 39 >75% Grass co 1.260 61 >75% Grass co 0.500 80 >75% Grass co 2.400 30 Woods, Good, 0.040 55 Woods, Good, 5.100 44 Weighted Aver 5.100 100.00% Pervio Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec) 11.8 100 0.0850 0.14 9.4 310 0.0120 0.55 2.0 310 0.0170 2.65	0.900 39 >75% Grass cover, Good, 1.260 61 >75% Grass cover, Good, 0.500 80 >75% Grass cover, Good, 2.400 30 Woods, Good, HSG A 0.040 55 Woods, Good, HSG B 5.100 44 Weighted Average 5.100 100.00% Pervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 11.8 100 0.0850 0.14 9.4 310 0.0120 0.55 2.0 310 0.0170 2.65	0.900 39 >75% Grass cover, Good, HSG A 1.260 61 >75% Grass cover, Good, HSG B 0.500 80 >75% Grass cover, Good, HSG D 2.400 30 Woods, Good, HSG A 0.040 55 Woods, Good, HSG B 5.100 44 Weighted Average 5.100 100.00% Pervious Area Teleption Teleptical Slope Velocity Capacity (ft/ft) (ft/sec) (cfs) 11.8 100 10.0850 10.14 Sheet Flow, Sheet Flow thru Wooded Area Woods: Light underbrush n= 0.400 P2= 3.31" Shallow Concentrated Flow, Shallow Concentrated Sheet I Woodland Kv= 5.0 fps Shallow Concentrated Flow, Shallow Concentrated Sheet I Paved Kv= 20.3 fps Paved Kv= 20.3 fps 1.0 377 1.0 378 1.0 379 1.0 379 1.0 370 1.0 370 1.0 370 1.0 370 1.0 370 1.0 370 1.0 370 1

Page 24

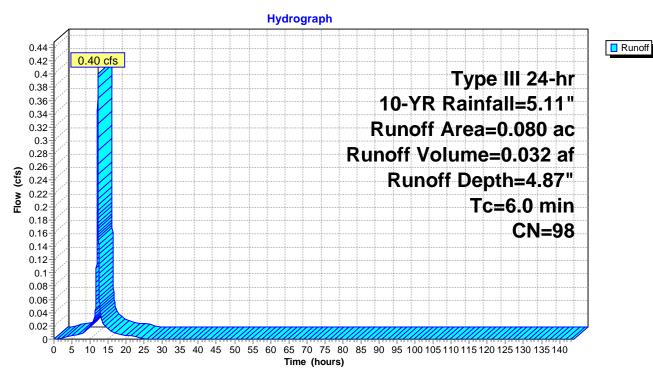
Subcatchment POST DA-2 PERVIOUS: POST DA-2 PERVIOUS

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 25

Summary for Subcatchment POST DA-3 IMPERVIOUS: POST DA-3 IMPERVIOUS


Runoff 0.40 cfs @ 12.08 hrs, Volume= 0.032 af, Depth= 4.87"

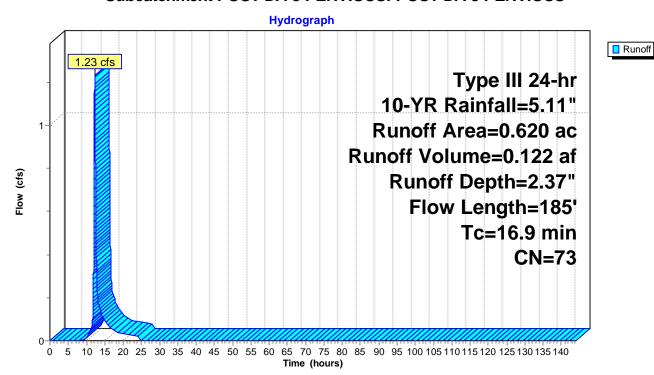
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=5.11"

_	Area	(ac)	CN	Desc	cription		
	0.	.020	98	Pave	ed parking	, HSG B	
	0.	.060	98	Pave	ed parking	, HSG D	
-	0.	.080	98	Weig	ghted Aver	age	
	0.	.080		100.	00% Impe	rvious Area	
	Tc	Leng	gth	Slope	Velocity	Capacity	Description
_	(min)	(fe	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry, Directly Connected Impervious Area

Direct Entry, Directly Connected Impervious Area

Subcatchment POST DA-3 IMPERVIOUS: POST DA-3 IMPERVIOUS

Page 26


Summary for Subcatchment POST DA-3 PERVIOUS: POST DA-3 PERVIOUS

Runoff = 1.23 cfs @ 12.23 hrs, Volume= 0.122 af, Depth= 2.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=5.11"

_	Area ((ac) (CN Des	scription			
	, HSG B						
_	0.4	400	80 >75	% Grass c	over, Good,	, HSG D	
0.620 73 Weighted Average							
	0.0	620	100	.00% Pervi	ous Area		
	Tc	Length		,	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	15.7	100	0.0150	0.11		Sheet Flow,	
						Grass: Dense n= 0.240 P2= 3.31"	
	1.2	85	0.0280	1.17		Shallow Concentrated Flow,	
_						Short Grass Pasture Kv= 7.0 fps	
	16.9	185	Total				

Subcatchment POST DA-3 PERVIOUS: POST DA-3 PERVIOUS

Volume

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 27

Summary for Pond POST 1B: POST EAST BASIN

Inflow = 5.05 cfs @ 12.08 hrs, Volume= 0.561 af

Outflow = 0.31 cfs @ 12.15 hrs, Volume= 0.558 af, Atten= 94%, Lag= 4.1 min

Primary = 0.31 cfs @ 12.15 hrs, Volume= 0.558 af

Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Sim-Route method, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Peak Elev= 139.03' @ 21.77 hrs Surf.Area= 13,632 sf Storage= 16,466 cf Flood Elev= 140.88' Surf.Area= 17,579 sf Storage= 44,667 cf

Plug-Flow detention time= 1,573.3 min calculated for 0.558 af (99% of inflow)

Avail.Storage Storage Description

Center-of-Mass det. time= 1,569.5 min (2,395.8 - 826.3)

Invert

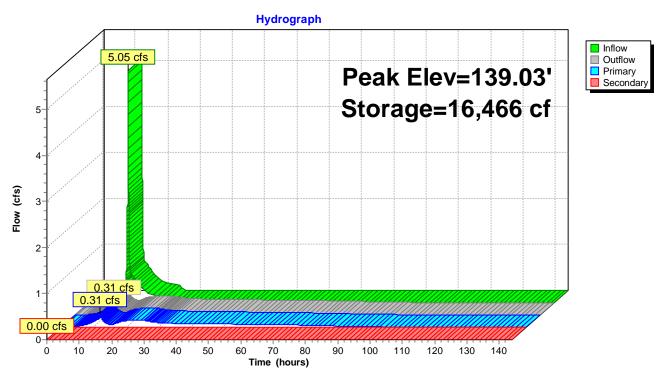
			9		
#1	137.46'	55,76	6 cf Custom	Stage Data (Prismatic) Listo	ed below (Recalc)
Elevation	on Su	rf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
137.4	l 6	13	0	0	
137.5	50	200	4	4	
138.0	00	12,293	3,123	3,128	
139.0	00	13,592	12,943	16,070	
140.0	00	14,964	14,278	30,348	
141.0	00	17,936	16,450	46,798	
141.5	50	17,936	8,968	55,766	
Device	Routing	Invert	Outlet Devices	S	
#1	Primary	137.46'	24.0" Round	RCP_Round 24"	
	•		L= 76.0' RCP	, groove end projecting, Ke	e= 0.200
			Inlet / Outlet In	vert= 137.46' / 137.09' S=	0.0049 '/' Cc= 0.900
				v Area= 3.14 sf	
#2	Device 1	137.59'		ce/Grate C= 0.600	
#3	Device 1	139.46'	_	0' rise Sharp-Crested Rect	angular Weir
			2 End Contrac	· ,	
#4	Device 1	141.26'		loriz. Orifice/Grate C= 0.	600
		4.40 ===:		flow at low heads	
#5	Secondary	140.50'	_	0.0' breadth Broad-Crested	
			Head (feet) 0.	20 0.40 0.60 0.80 1.00 1	.20 1.40 1.60

Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=0.31 cfs @ 12.15 hrs HW=138.30' TW=137.78' (Dynamic Tailwater) **1=RCP Round 24"** (Passes 0.31 cfs of 3.04 cfs potential flow)

—2=Orifice/Grate (Orifice Controls 0.31 cfs @ 3.50 fps)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)


4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=137.46' TW=136.31' (Dynamic Tailwater) **5=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 28

Pond POST 1B: POST EAST BASIN

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 29

Summary for Pond POST 2B: POST WEST BASIN

Inflow 20.89 cfs @ 12.08 hrs. Volume= 2.414 af Outflow 0.59 cfs @ 18.01 hrs, Volume= 1.623 af, Atten= 97%, Lag= 355.5 min Primary 0.59 cfs @ 18.01 hrs, Volume= 1.623 af 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Secondary =

Routing by Sim-Route method, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Peak Elev= 138.91' @ 18.01 hrs Surf.Area= 27,529 sf Storage= 70,777 cf

Plug-Flow detention time= 2,199.5 min calculated for 1.623 af (67% of inflow) Center-of-Mass det. time= 1,745.7 min (2,890.7 - 1,145.1)

Volume	Invert	Avail.Sto	rage Storage	e Description			
#1	136.00'	133,46	66 cf Custon	n Stage Data (Pri	ismatic) Listed below (Recalc)		
Elevation	on Su	urf.Area	Inc.Store	Cum.Store			
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)			
136.0	00	21,387	0	0			
137.0	00	23,291	22,339	22,339			
138.0	00	25,304	24,298	46,637			
139.0	00	27,739	26,522	73,158			
140.0	00	30,143	28,941	102,099			
141.0	00	32,590	31,367	133,466			
		•	·	•			
Device	Routing	Invert	Outlet Devic	es			
#1	Primary	135.48'	24.0" Round	d Culvert L= 15	.0' RCP, groove end projecting, Ke= 0.200		
	,				135.05' S= 0.0287 '/' Cc= 0.900		
			n= 0.013, FI	low Area= 3.14 s	f		
#2	Device 1	137.45'		rifice/Grate C=			
#3	Device 1	138.83'	4.0' long x 1.85' rise Sharp-Crested Rectangular Weir				
			2 End Contra	action(s)	•		
#4	Device 1	140.68'	48.0" x 48.0" Horiz. Orifice/Grate C= 0.600				
			Limited to w	eir flow at low he	ads		
#5	Secondary	137.46'			.0' RCP, groove end projecting, Ke= 0.200		
	,				137.46' S= -0.0049 '/' Cc= 0.900		
					_		

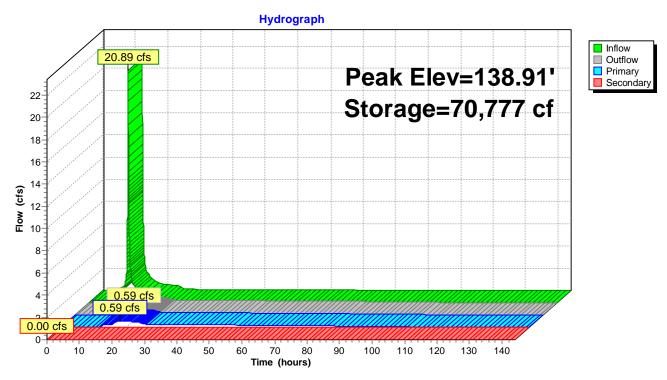
Primary OutFlow Max=0.59 cfs @ 18.01 hrs HW=138.91' TW=136.31' (Dynamic Tailwater)

n= 0.013, Flow Area= 3.14 sf

-1=Culvert (Passes 0.59 cfs of 29.23 cfs potential flow)

1-2=Orifice/Grate (Orifice Controls 0.27 cfs @ 5.57 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 0.32 cfs @ 0.95 fps)


4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=136.00' TW=137.46' (Dynamic Tailwater) -5=Culvert (Controls 0.00 cfs)

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 30

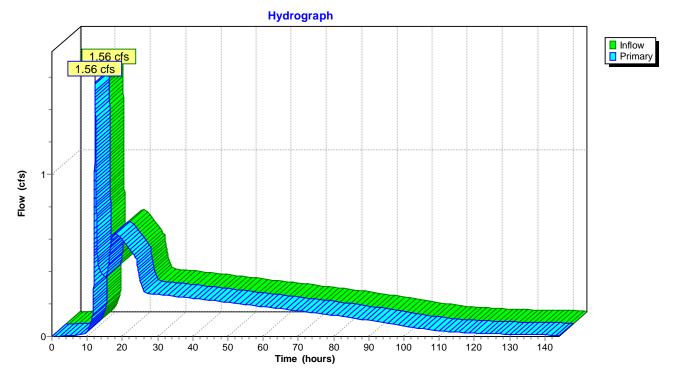
Pond POST 2B: POST WEST BASIN

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 31

Summary for Link POST POI: POST OUTFALL (POINT OF INVESTIGATION)


Inflow = 1.56 cfs @ 12.23 hrs, Volume= 1.778 af

Primary = 1.56 cfs @ 12.24 hrs, Volume= 1.778 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs

Fixed water surface Elevation= 136.31'

Link POST POI: POST OUTFALL (POINT OF INVESTIGATION)

POST-DEVELOPMENT CONDITIONS
Type III 24-hr 100-YR Rainfall=8.69"
Printed 11/30/2020

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 32

Time span=0.00-144.00 hrs, dt=0.01 hrs, 14401 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Sim-Route method - Pond routing by Sim-Route method

Subcatchment POST DA-1 IMPERVIOUS: Runoff Area=1.010 ac 100.00% Impervious Runoff Depth=8.45

Tc=6.0 min CN=98 Runoff=8.62 cfs 0.711 af

Subcatchment POST DA-1 PERVIOUS: POST Runoff Area=6.950 ac 0.00% Impervious Runoff Depth=1.56"

Flow Length=1,440' Tc=60.4 min CN=40 Runoff=3.89 cfs 0.906 af

Subcatchment POST DA-2 IMPERVIOUS: Runoff Area=4.120 ac 100.00% Impervious Runoff Depth=8.45"

Tc=6.0 min CN=98 Runoff=35.16 cfs 2.901 af

Subcatchment POST DA-2 PERVIOUS: POST Runoff Area=5.100 ac 0.00% Impervious Runoff Depth=2.00"

Flow Length=1,097' Tc=24.2 min CN=44 Runoff=6.39 cfs 0.850 af

Subcatchment POST DA-3 IMPERVIOUS: Runoff Area=0.080 ac 100.00% Impervious Runoff Depth=8.45"

Tc=6.0 min CN=98 Runoff=0.68 cfs 0.056 af

Subcatchment POST DA-3 PERVIOUS: POST Runoff Area=0.620 ac 0.00% Impervious Runoff Depth=5.43"

Flow Length=185' Tc=16.9 min CN=73 Runoff=2.85 cfs 0.280 af

Pond POST 1B: POST EAST BASIN Peak Elev=139.95' Storage=29,600 cf Inflow=12.28 cfs 1.734 af

Primary=3.49 cfs 1.731 af Secondary=0.00 cfs 0.000 af Outflow=3.49 cfs 1.731 af

Pond POST 2B: POST WEST BASIN Peak Elev=139.57' Storage=89,223 cf Inflow=36.84 cfs 5.482 af

Primary=8.28 cfs 4.571 af Secondary=4.97 cfs 0.117 af Outflow=8.28 cfs 4.688 af

Link POST POI: POST OUTFALL (POINT OF INVESTIGATION) Inflow=9.16 cfs 4.907 af

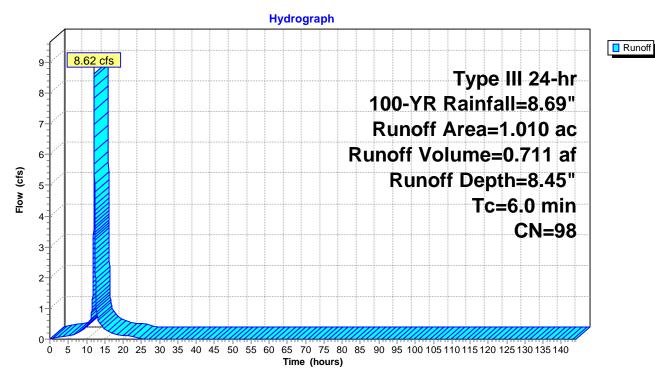
Primary=9.16 cfs 4.907 af

Total Runoff Area = 17.880 ac Runoff Volume = 5.706 af Average Runoff Depth = 3.83" 70.86% Pervious = 12.670 ac 29.14% Impervious = 5.210 ac

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 33


Summary for Subcatchment POST DA-1 IMPERVIOUS: POST DA-1 IMPERVIOUS

Runoff 8.62 cfs @ 12.08 hrs, Volume= 0.711 af, Depth= 8.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=8.69"

Area	(ac)	CN	Desc	cription		
0.	670	98	Pave	ed parking	HSG A	
 0.340 98 Paved parking, HSG B						
1.010 98 Weighted Average						
1.	010		100.	00% Impe	rvious Area	l .
_	_					
Tc	Leng	jth	Slope	Velocity	Capacity	Description
 (min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
 6.0						Direct Entry, Directly Connected Impervious Area

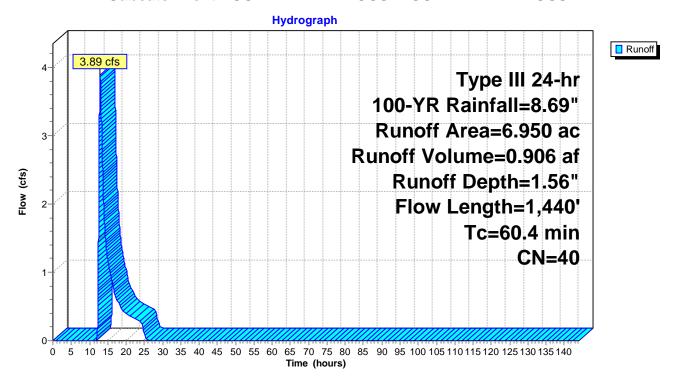
Subcatchment POST DA-1 IMPERVIOUS: POST DA-1 IMPERVIOUS

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 34

Summary for Subcatchment POST DA-1 PERVIOUS: POST DA-1 PERVIOUS


Runoff = 3.89 cfs @ 12.95 hrs, Volume= 0.906 af, Depth= 1.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=8.69"

Area	(ac) C	N Desc	cription			
0.	610 3	39 >759	% Grass co	over, Good	, HSG A	
0.	760 6			over, Good		
			ds, Good,		,	
			ds, Good,			
			ghted Aver			
	950 ¬	•	00% Pervi			
0.	930	100.	00 /6 1 C IVI	ous Alea		
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description	
40.2				(013)	Sheet Flow, Sheet Flow thru Wooded Area	
40.2	100	0.0040	0.04		•	
40.0	<i></i>	0.0400	0.07		Woods: Light underbrush n= 0.400 P2= 3.31"	
13.8	557	0.0180	0.67		Shallow Concentrated Flow, Shallow Concentrated Sheet Flow Wo	000
					Woodland Kv= 5.0 fps	
6.0	655	0.0080	1.82		Shallow Concentrated Flow, Shallow Concentrated Sheet Flow Pa	ive
					Paved Kv= 20.3 fps	
0.4	128	0.0050	5.09	16.00	Pipe Channel, RCP_Round 24"	
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'	
					n= 0.013	
60.4	1,440	Total				

Page 35

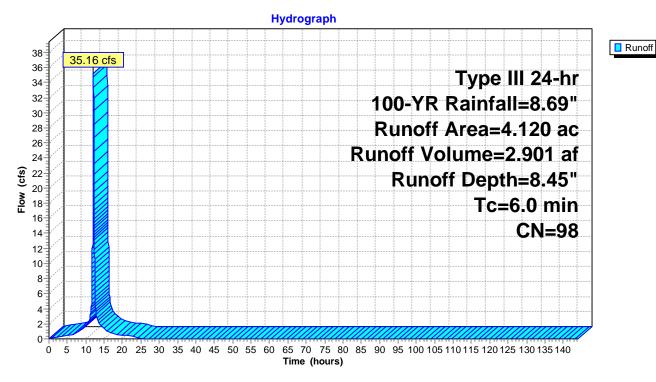
Subcatchment POST DA-1 PERVIOUS: POST DA-1 PERVIOUS

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 36

Summary for Subcatchment POST DA-2 IMPERVIOUS: POST DA-2 IMPERVIOUS


Runoff 35.16 cfs @ 12.08 hrs, Volume= 2.901 af, Depth= 8.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=8.69"

_	Area	(ac)	CN	Desc	cription		
	2.	010	98	Pave	ed parking	, HSG A	
	2.090 98 Paved parking, HSG B						
	0.020 98 Paved parking, HSG D						
	4.120 98 Weighted Average						
	4.	120		100.	00% Impe	rvious Area	a
_	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0	•					Direct Entry, Directly Connected Impervious Area

Direct Entry, Directly Connected Impervious Area

Subcatchment POST DA-2 IMPERVIOUS: POST DA-2 IMPERVIOUS

24.2

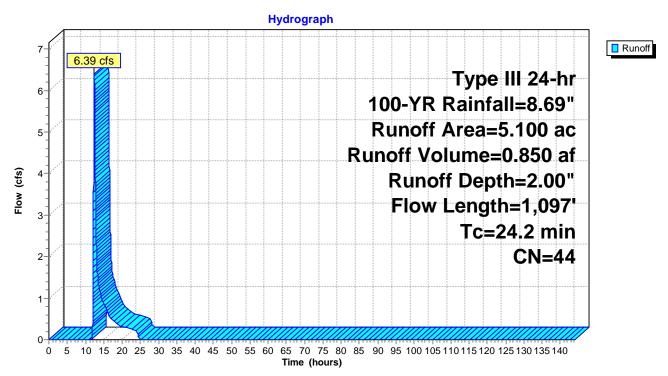
1,097 Total

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 37

Summary for Subcatchment POST DA-2 PERVIOUS: POST DA-2 PERVIOUS


Runoff = 6.39 cfs @ 12.40 hrs, Volume= 0.850 af, Depth= 2.00"

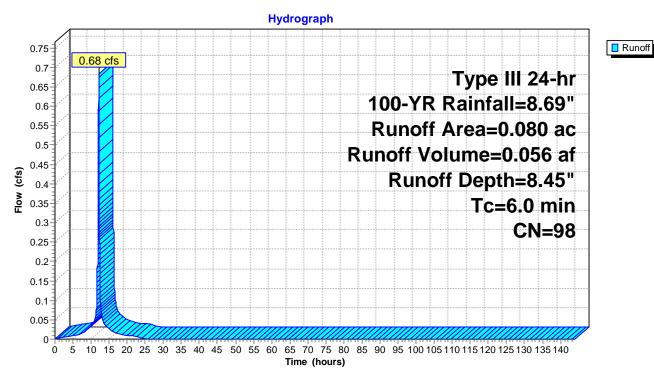
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=8.69"

	Area ((ac) C	N Desc	cription			
	0.9	900 3	39 >75%	% Grass co	over, Good,	HSG A	
	1.3	260 6			over, Good,		
	0.9	500 8	30 >75%	% Grass co	over, Good,	HSG D	
	2.4	400 3	0 Woo	ds, Good,	HSG A		
_	0.0	040 5	55 Woo	ds, Good,	HSG B		
	5.	100 4	4 Weig	ghted Aver	age		
	5.	100	100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	11.8	100	0.0850	0.14	(613)	Sheet Flow, Sheet Flow thru Wooded Area	
	11.0	100	0.0000	0.14		Woods: Light underbrush n= 0.400 P2= 3.31"	
	9.4	310	0.0120	0.55		Shallow Concentrated Flow, Shallow Concentrated Sheet	Flow Wood
	2.0	310	0.0170	2.65		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Shallow Concentrated Sheet I	Flow Paved
	1.0	377	0.0080	6.44	20.23	Paved Kv= 20.3 fps Pipe Channel, RCP_Round 24"	
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50' n= 0.013	

Page 38

Subcatchment POST DA-2 PERVIOUS: POST DA-2 PERVIOUS

Page 39

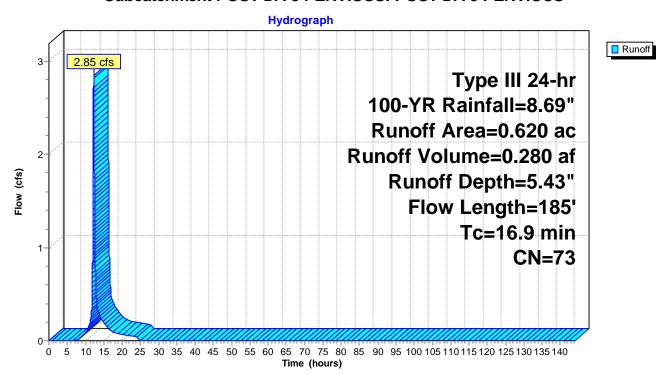

Summary for Subcatchment POST DA-3 IMPERVIOUS: POST DA-3 IMPERVIOUS

Runoff 0.68 cfs @ 12.08 hrs, Volume= 0.056 af, Depth= 8.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=8.69"

Area	(ac)	CN	Desc	cription		
0.	020	98	Pave	ed parking	, HSG B	
 0.060 98 Paved parking, HSG D						
0.080 98 Weighted Average						
0.	080		100.	00% Impe	rvious Area	l
_						
Tc	Leng	jth 💮	Slope	Velocity	Capacity	Description
 (min)	(fe	et)	(ft/ft)	(ft/sec)	(cfs)	
 6.0						Direct Entry, Directly Connected Impervious Area

Subcatchment POST DA-3 IMPERVIOUS: POST DA-3 IMPERVIOUS


Summary for Subcatchment POST DA-3 PERVIOUS: POST DA-3 PERVIOUS

Runoff = 2.85 cfs @ 12.23 hrs, Volume= 0.280 af, Depth= 5.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=8.69"

	Area	(ac) C	N Des	cription					
	0.220 61 >75% Grass cover, Good, HSG B								
0.400 80 >75% Grass cover, Good, HSG D									
	0.620 73 Weighted Average								
	0.	620	100.	00% Pervi	ous Area				
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	15.7	100	0.0150	0.11		Sheet Flow,			
						Grass: Dense n= 0.240 P2= 3.31"			
	1.2	85	0.0280	1.17		Shallow Concentrated Flow,			
_						Short Grass Pasture Kv= 7.0 fps			
Ī	16.9	185	Total			<u> </u>			

Subcatchment POST DA-3 PERVIOUS: POST DA-3 PERVIOUS

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 41

Summary for Pond POST 1B: POST EAST BASIN

Inflow = 12.28 cfs @ 12.11 hrs, Volume= 1.734 af

Outflow = 3.49 cfs @ 13.41 hrs, Volume= 1.731 af, Atten= 72%, Lag= 78.1 min

Primary = 3.49 cfs @ 13.41 hrs, Volume= 1.731 af

Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Sim-Route method, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Peak Elev= 139.95' @ 13.40 hrs Surf.Area= 14,895 sf Storage= 29,600 cf Flood Elev= 140.88' Surf.Area= 17,579 sf Storage= 44,667 cf

Plug-Flow detention time= 717.2 min calculated for 1.731 af (100% of inflow) Center-of-Mass det. time= 715.9 min (1,564.5 - 848.6)

Volume Invert Avail Storage Storage Description

volume	inve	rt Avaii.St	orage Storage	Description	
#1	137.4	6' 55,7	766 cf Custom	Stage Data (Prismatic) Listed below (Recalc)	
Elevation		Surf.Area	Inc.Store	Cum.Store	
(feet	:)	(sq-ft)	(cubic-feet)	(cubic-feet)	
137.46	6	13	0	0	
137.50	0	200	4	4	
138.00	0	12,293	3,123	3,128	
139.00	0	13,592	12,943	16,070	
140.00	0	14,964	14,278	30,348	
141.00	0	17,936	16,450	46,798	
141.50	0	17,936	8,968	55,766	
Device	Routing	Inver	t Outlet Device:	es	
#1	Primary	137.46	24.0" Round	RCP_Round 24"	

Device	Routing	invert	Outlet Devices
#1	Primary	137.46'	24.0" Round RCP_Round 24"
	•		L= 76.0' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 137.46' / 137.09' S= 0.0049 '/' Cc= 0.900
			n= 0.013, Flow Area= 3.14 sf
#2	Device 1	137.59'	4.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	139.46'	3.0' long x 1.80' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)
#4	Device 1	141.26'	48.0" x 48.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#5	Secondary	140.50'	55.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=3.49 cfs @ 13.41 hrs HW=139.95' TW=139.54' (Dynamic Tailwater)
1=RCP_Round 24" (Passes 3.49 cfs of 11.21 cfs potential flow)

—2=Orifice/Grate (Orifice Controls 0.27 cfs @ 3.10 fps)

—3=Sharp-Crested Rectangular Weir (Weir Controls 3.22 cfs @ 2.27 fps)

4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=137.46' TW=136.31' (Dynamic Tailwater) **5=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 42

Pond POST 1B: POST EAST BASIN

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 43

Summary for Pond POST 2B: POST WEST BASIN

Inflow = 36.84 cfs @ 12.09 hrs, Volume= 5.482 af

Outflow = 8.28 cfs @ 12.83 hrs, Volume= 4.688 af, Atten= 78%, Lag= 44.7 min

Primary = 8.28 cfs @ 12.83 hrs, Volume= 4.571 af

Secondary = 4.97 cfs @ 12.18 hrs, Volume= 0.117 af

Routing by Sim-Route method, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Peak Elev= 139.57' @ 12.83 hrs Surf.Area= 29,098 sf Storage= 89,223 cf

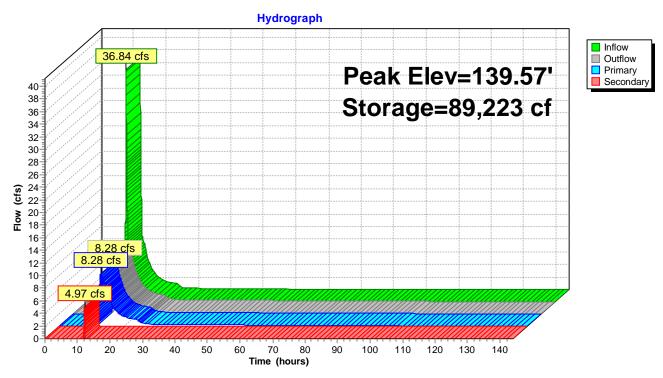
Plug-Flow detention time= 939.6 min calculated for 4.688 af (86% of inflow) Center-of-Mass det. time= 701.0 min (1,726.2 - 1,025.2)

Volume	Invert	Avail.Sto	rage Storage D	Description	
#1	136.00'	133,46	66 cf Custom S	Stage Data (Pri	smatic) Listed below (Recalc)
Flavoria		f A	la a Otana	O Ota	
Elevation		ırf.Area	Inc.Store	Cum.Store	
(fee	•	(sq-ft)	(cubic-feet)	(cubic-feet)	
136.0	00	21,387	0	0	
137.0	00	23,291	22,339	22,339	
138.0	00	25,304	24,298	46,637	
139.0	00	27,739	26,522	73,158	
140.0	00	30,143	28,941	102,099	
141.0	00	32,590	31,367	133,466	
Device	Routing	Invert	Outlet Devices		
#1	Primary	135.48'	24.0" Round C	Culvert L= 15.	0' RCP, groove end projecting, Ke= 0.200
	-		Inlet / Outlet Inv	vert= 135.48' /	135.05' S= 0.0287 '/' Cc= 0.900
			n= 0.013, Flow	/ Area= 3.14 sf	
#2	Device 1	137.45'	3.0" Vert. Orific	ce/Grate C=	0.600
#3	Device 1	138.83'	4.0' long x 1.85	5' rise Sharp-C	rested Rectangular Weir
			2 End Contract	ion(s)	_
#4	Device 1	140.68'	48.0" x 48.0" H	oriz. Orifice/G	rate C= 0.600
			Limited to weir	flow at low hea	ads
#5	Secondary	137.46'	24.0" Round C	Culvert L= 76.	0' RCP, groove end projecting, Ke= 0.200
	,				137.46' S= -0.0049 '/' Cc= 0.900
			n= 0.013, Flow	/ Area= 3.14 sf	
			•		

Primary OutFlow Max=8.28 cfs @ 12.83 hrs HW=139.57' TW=136.31' (Dynamic Tailwater)

1=Culvert (Passes 8.28 cfs of 33.21 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.33 cfs @ 6.79 fps)


—3=Sharp-Crested Rectangular Weir (Weir Controls 7.94 cfs @ 2.80 fps)

4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=4.36 cfs @ 12.18 hrs HW=139.02' TW=138.92' (Dynamic Tailwater) -5=Culvert (Outlet Controls 4.36 cfs @ 1.79 fps)

Page 44

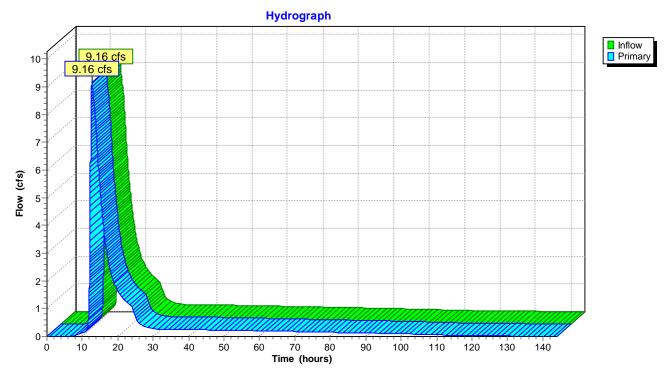
Pond POST 2B: POST WEST BASIN

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 45

Summary for Link POST POI: POST OUTFALL (POINT OF INVESTIGATION)


Inflow = 9.16 cfs @ 12.62 hrs, Volume= 4.907 af

Primary = 9.16 cfs @ 12.63 hrs, Volume= 4.907 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs

Fixed water surface Elevation= 136.31'

Link POST POI: POST OUTFALL (POINT OF INVESTIGATION)

POST-DEVELOPMENT CONDITIONS

NJ DEP 2-hr DEP 2-HR Rainfall=1.25"

Printed 11/30/2020

Prepared by Kimley-Horn HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 46

Time span=0.00-144.00 hrs, dt=0.01 hrs, 14401 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Sim-Route method - Pond routing by Sim-Route method

Subcatchment POST DA-1 IMPERVIOUS: Runoff Area=1.010 ac 100.00% Impervious Runoff Depth=1.03"

Tc=6.0 min CN=98 Runoff=2.96 cfs 0.087 af

Subcatchment POST DA-1 PERVIOUS: POST Runoff Area=6.950 ac 0.00% Impervious Runoff Depth=0.00"

Flow Length=1,440' Tc=60.4 min CN=40 Runoff=0.00 cfs 0.000 af

Subcatchment POST DA-2 IMPERVIOUS: Runoff Area=4.120 ac 100.00% Impervious Runoff Depth=1.03"

Tc=6.0 min CN=98 Runoff=12.06 cfs 0.355 af

Subcatchment POST DA-2 PERVIOUS: POST Runoff Area=5.100 ac 0.00% Impervious Runoff Depth=0.00"

Flow Length=1,097' Tc=24.2 min CN=44 Runoff=0.00 cfs 0.000 af

Subcatchment POST DA-3 IMPERVIOUS: Runoff Area=0.080 ac 100.00% Impervious Runoff Depth=1.03"

Tc=6.0 min CN=98 Runoff=0.23 cfs 0.007 af

Subcatchment POST DA-3 PERVIOUS: POST Runoff Area=0.620 ac 0.00% Impervious Runoff Depth=0.06"

Flow Length=185' Tc=16.9 min CN=73 Runoff=0.05 cfs 0.003 af

Pond POST 1B: POST EAST BASIN Peak Elev=138.00' Storage=3,127 cf Inflow=2.96 cfs 0.087 af

Primary=0.21 cfs 0.084 af Secondary=0.00 cfs 0.000 af Outflow=0.21 cfs 0.084 af

Pond POST 2B: POST WEST BASIN Peak Elev=136.86' Storage=19,139 cf Inflow=12.19 cfs 0.439 af

Primary=0.00 cfs 0.000 af Secondary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af

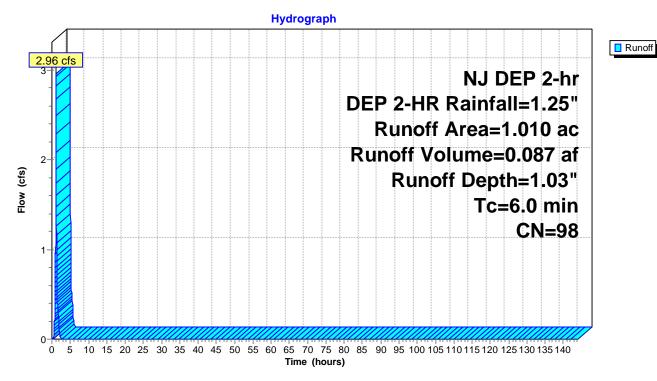
Link POST POI: POST OUTFALL (POINT OF INVESTIGATION) Inflow=0.23 cfs 0.010 af

Primary=0.23 cfs 0.010 af

Total Runoff Area = 17.880 ac Runoff Volume = 0.452 af Average Runoff Depth = 0.30" 70.86% Pervious = 12.670 ac 29.14% Impervious = 5.210 ac

Page 47

Printed 11/30/2020


Summary for Subcatchment POST DA-1 IMPERVIOUS: POST DA-1 IMPERVIOUS

Runoff 2.96 cfs @ 1.11 hrs, Volume= 0.087 af, Depth= 1.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs NJ DEP 2-hr DEP 2-HR Rainfall=1.25"

Area	(ac)	CN	Desc	ription		
0.	670	98	Pave	ed parking	HSG A	
 0.	340	98	Pave	ed parking,	HSG B	
1.	010	98	Weig	hted Aver	age	
1.010 100.00% Impervious Area				00% Impe	rvious Area	l
_	_					
Tc	Leng	ıth	Slope	Velocity	Capacity	Description
 (min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
6.0						Direct Entry, Directly Connected Impervious Area

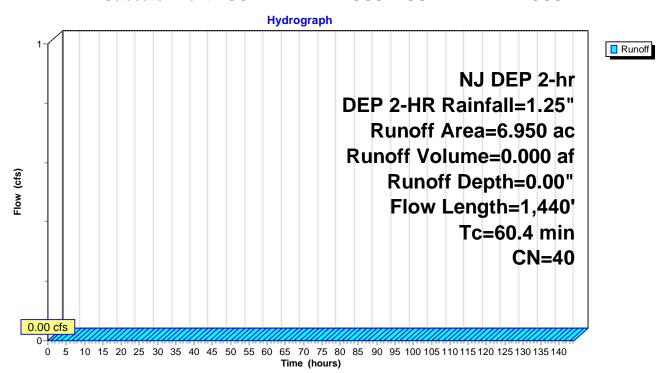
Subcatchment POST DA-1 IMPERVIOUS: POST DA-1 IMPERVIOUS

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 48

Summary for Subcatchment POST DA-1 PERVIOUS: POST DA-1 PERVIOUS


Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs NJ DEP 2-hr DEP 2-HR Rainfall=1.25"

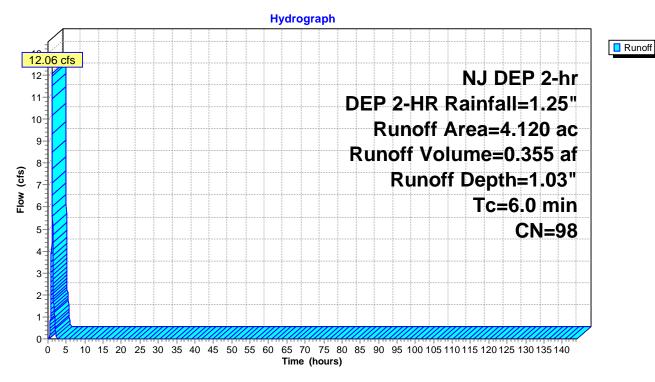
	Area ((ac) C	N Desc	cription						
_					over Good	HSG A				
0.610 39 >75% Grass cover, Good, HSG A 0.760 61 >75% Grass cover, Good, HSG B										
	4.000 30 Woods, Good, HSG A									
	1.580 55 Woods, Good, HSG B									
_										
				ghted Aver						
	6.	950	100.0	00% Pervi	ous Area		ĺ			
	To	l opeth	Clana	\/olooitr	Consoitu	Description				
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	40.2	100	0.0040	0.04		Sheet Flow, Sheet Flow thru Wooded Area				
						Woods: Light underbrush n= 0.400 P2= 3.31"				
	13.8	557	0.0180	0.67		Shallow Concentrated Flow, Shallow Concentrated Sheet Flow	<i>N</i> Wood			
						Woodland Kv= 5.0 fps				
	6.0	655	0.0080	1.82		Shallow Concentrated Flow, Shallow Concentrated Sheet Flow	<i>N</i> Paved			
						Paved Kv= 20.3 fps	ļ			
	0.4	128	0.0050	5.09	16.00	Pipe Channel, RCP_Round 24"				
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
_						n= 0.013				
	60.4	1,440	Total							

Page 49

Subcatchment POST DA-1 PERVIOUS: POST DA-1 PERVIOUS

Page 50

Summary for Subcatchment POST DA-2 IMPERVIOUS: POST DA-2 IMPERVIOUS


Runoff 12.06 cfs @ 1.11 hrs, Volume= 0.355 af, Depth= 1.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs NJ DEP 2-hr DEP 2-HR Rainfall=1.25"

Area ((ac)	CN	Desc	ription		
2.	010	98	Pave	ed parking	HSG A	
2.	090	98	Pave	ed parking	HSG B	
 0.	020	98	Pave	ed parking	HSG D	
4.120 98 Weighted Average					age	
4.	120		100.0	00% Impe	rvious Area	
 Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry, Directly Connected Impervious Area

Direct Entry, Directly Connected Impervious Area

Subcatchment POST DA-2 IMPERVIOUS: POST DA-2 IMPERVIOUS

24.2

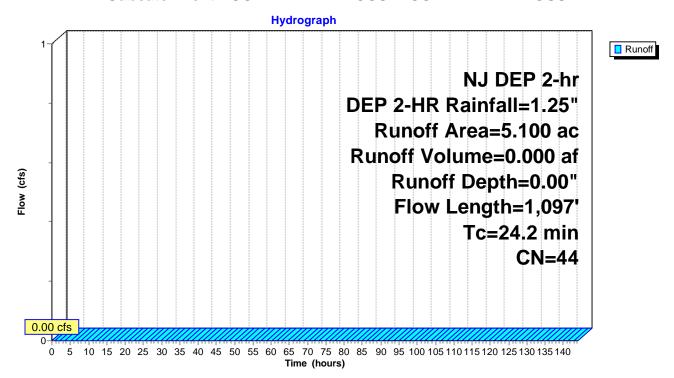
1,097 Total

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 51

Summary for Subcatchment POST DA-2 PERVIOUS: POST DA-2 PERVIOUS


Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs NJ DEP 2-hr DEP 2-HR Rainfall=1.25"

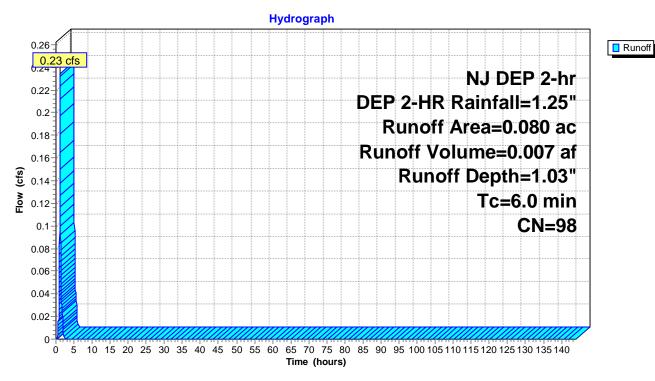
_
_
_
t Flow Wood
t Flow Pave

Page 52

Subcatchment POST DA-2 PERVIOUS: POST DA-2 PERVIOUS

Page 53

Summary for Subcatchment POST DA-3 IMPERVIOUS: POST DA-3 IMPERVIOUS


Runoff 0.23 cfs @ 1.11 hrs, Volume= 0.007 af, Depth= 1.03"

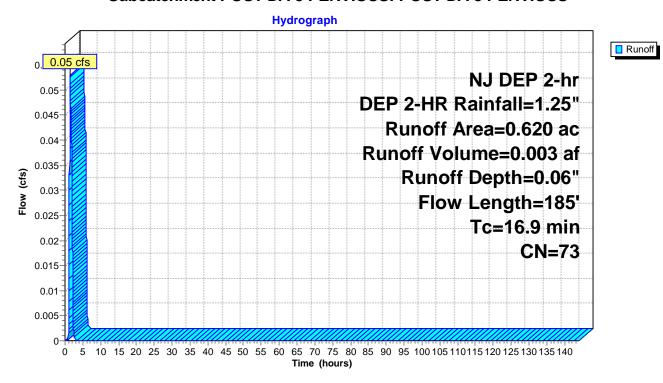
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs NJ DEP 2-hr DEP 2-HR Rainfall=1.25"

	Area	(ac)	CN	Desc	cription		
	0.	020	98	Pave	ed parking	, HSG B	
	0.	060	98	Pave	ed parking	, HSG D	
0.080 98 Weighted Average							
	0.	080		100.	00% Impe	rvious Area	l
	Тс	Leng	gth	Slope	Velocity	Capacity	Description
	(min)	(fe	et)	(ft/ft)	(ft/sec)	(cfs)	·
	6.0						Direct Entry, Directly Connected Impervious Area

Direct Entry, Directly Connected Impervious Area

Subcatchment POST DA-3 IMPERVIOUS: POST DA-3 IMPERVIOUS

Page 54


Summary for Subcatchment POST DA-3 PERVIOUS: POST DA-3 PERVIOUS

Runoff = 0.05 cfs @ 1.39 hrs, Volume= 0.003 af, Depth= 0.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs NJ DEP 2-hr DEP 2-HR Rainfall=1.25"

	Area	(ac) C	N Des	cription				
	0.220 61 >75% Grass cover, Good, HSG B							
	0.400 80 >75% Grass cover, Good, HSG D							
	0.	620 7	73 Wei	ghted Avei	age			
	0.	620	100.	00% Pervi	ous Area			
	Tc	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	15.7	100	0.0150	0.11		Sheet Flow,		
						Grass: Dense n= 0.240 P2= 3.31"		
	1.2	85	0.0280	1.17		Shallow Concentrated Flow,		
_						Short Grass Pasture Kv= 7.0 fps		
	16.9	185	Total					

Subcatchment POST DA-3 PERVIOUS: POST DA-3 PERVIOUS

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 55

Printed 11/30/2020

Summary for Pond POST 1B: POST EAST BASIN

Inflow 2.96 cfs @ 1.11 hrs. Volume= 0.087 af Outflow 1.84 hrs, Volume= 0.21 cfs @ 0.084 af, Atten= 93%, Lag= 43.8 min Primary 0.21 cfs @ 1.84 hrs, Volume= 0.084 af Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Sim-Route method, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Peak Elev= 138.00' @ 1.84 hrs Surf.Area= 12,291 sf Storage= 3,127 cf Flood Elev= 140.88' Surf.Area= 17,579 sf Storage= 44,667 cf

Plug-Flow detention time= 242.1 min calculated for 0.084 af (97% of inflow)

Center-of-Mass det. time= 241.1 min (311.4 - 70.3)

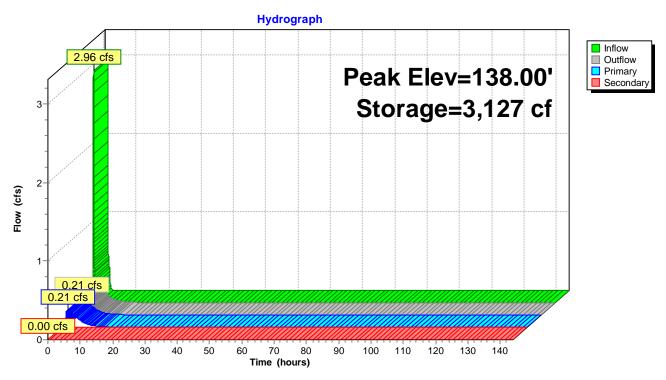
Volume	Inv	ert Avai	I.Storage	Storage	Description	
#1	137.	46'	55,766 cf	Custom	Stage Data (Pri	ismatic) Listed below (Recalc)
Elevatio		Surf.Area (sq-ft)		:.Store c-feet)	Cum.Store (cubic-feet)	
137.4	ŀ6	13		0	0	
137.5	50	200		4	4	
138.0	00	12,293		3,123	3,128	
139.0	00	13,592	•	12,943	16,070	
140.0	00	14,964	•	14,278	30,348	
141.0	00	17,936	•	16,450	46,798	
141.5	50	17,936		8,968	55,766	
Device	Routing	In	vert Outl	et Device	s	
#1	Primary	137	'.46' 24.0	" Round	RCP_Round 2	4"
	,				_	rojecting, Ke= 0.200
						137 00 ' S- 0 0040 '/'

			L= 76.0 RCP, groove end projecting, Re= 0.200
			Inlet / Outlet Invert= 137.46' / 137.09' S= 0.0049 '/' Cc= 0.900
			n= 0.013, Flow Area= 3.14 sf
#2	Device 1	137.59'	4.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	139.46'	3.0' long x 1.80' rise Sharp-Crested Rectangular Weir
			2 End Contraction(s)
#4	Device 1	141.26'	48.0" x 48.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#5	Secondary	140.50'	55.0' long x 10.0' breadth Broad-Crested Rectangular Weir
	•		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64
			• •

Primary OutFlow Max=0.21 cfs @ 1.84 hrs HW=138.00' TW=136.71' (Dynamic Tailwater)

1=RCP_Round 24" (Passes 0.21 cfs of 1.36 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.21 cfs @ 2.37 fps)


-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=137.46' TW=136.31' (Dynamic Tailwater) **5=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Page 56

Pond POST 1B: POST EAST BASIN

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 57

Printed 11/30/2020

Summary for Pond POST 2B: POST WEST BASIN

Inflow 12.19 cfs @ 1.11 hrs, Volume= 0.439 af Outflow 0.00 hrs, Volume= 0.00 cfs @ 0.000 af, Atten= 100%, Lag= 0.0 min Primary 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Sim-Route method, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs Peak Elev= 136.86' @ 144.00 hrs Surf.Area= 23,028 sf Storage= 19,139 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

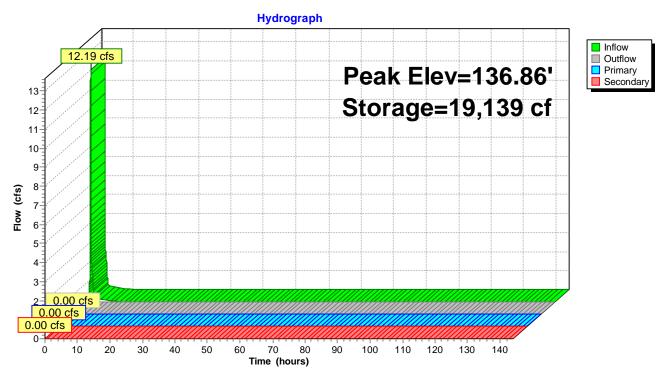
Inver	t Avail.Sto	rage Storage	Description			
136.00	' 133,46	66 cf Custom	Stage Data (Pri	smatic) Listed below (Recalc)		
on S	urf.Area	Inc.Store	Cum.Store			
et)	(sq-ft)	(cubic-feet)	(cubic-feet)			
00	21,387	0	0			
00	23,291	22,339	22,339			
00	25,304	24,298	46,637			
00	27,739	26,522	73,158			
00	30,143	28,941	102,099			
00	32,590	31,367	133,466			
Routing	Invert	Outlet Device	es			
Primary	135.48'	24.0" Round	Culvert L= 15.	.0' RCP, groove end projecting, Ke= 0.200		
-		Inlet / Outlet I	nvert= 135.48' /	135.05' S= 0.0287 '/' Cc= 0.900		
		n= 0.013, Flo	ow Area= 3.14 st			
Device 1	137.45'	3.0" Vert. Ori	fice/Grate C=	0.600		
Device 1	138.83'	4.0' long x 1.85' rise Sharp-Crested Rectangular Weir				
		2 End Contra	ction(s)			
Device 1	140.68'	48.0" x 48.0" Horiz. Orifice/Grate C= 0.600				
		Limited to we	ir flow at low he	ads		
Secondary	/ 137.46'	24.0" Round	Culvert L= 76.	.0' RCP, groove end projecting, Ke= 0.200		
		Inlet / Outlet I	nvert= 137.09' /	137.46' S= -0.0049 '/' Cc= 0.900		
	136.00 on Set) 00 00 00 00 Routing Primary Device 1 Device 1	136.00' 133,46 on Surf.Area et) (sq-ft) 00 21,387 00 23,291 00 25,304 00 27,739 00 30,143 00 32,590 Routing Invert Primary 135.48' Device 1 137.45' Device 1 138.83' Device 1 140.68'	136.00' 133,466 cf Custom on Surf.Area Inc.Store et) (sq-ft) (cubic-feet) 00 21,387 0 00 23,291 22,339 00 25,304 24,298 00 27,739 26,522 00 30,143 28,941 00 32,590 31,367 Routing Invert Outlet Device Primary 135.48' 24.0" Round Inlet / Outlet I n= 0.013, Flo Device 1 137.45' 3.0" Vert. Ori Device 1 138.83' 4.0' long x 1.2 2 End Contra Device 1 140.68' 48.0" x 48.0" Limited to we Secondary 137.46' 24.0" Round	136.00' 133,466 cf Custom Stage Data (Prion Surf.Area Inc.Store Cum.Store (sq-ft) (cubic-feet) (cubic-feet) (200 21,387 0 0 0 0 23,291 22,339 22,39 2		

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=136.00' TW=136.31' (Dynamic Tailwater)

n= 0.013, Flow Area= 3.14 sf

1=Culvert (Controls 0.00 cfs)

2=Orifice/Grate (Controls 0.00 cfs)


-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=136.00' TW=137.46' (Dynamic Tailwater) **5=Culvert** (Controls 0.00 cfs)

Page 58

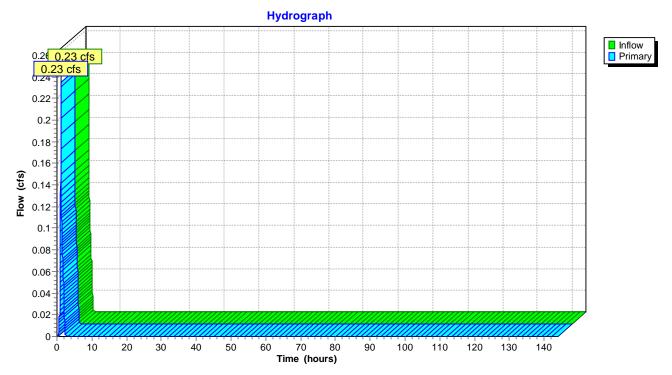
Pond POST 2B: POST WEST BASIN

Prepared by Kimley-Horn

HydroCAD® 10.00-22 s/n 09843 © 2018 HydroCAD Software Solutions LLC

Page 59

Summary for Link POST POI: POST OUTFALL (POINT OF INVESTIGATION)


Inflow = 0.23 cfs @ 1.11 hrs, Volume= 0.010 af

Primary = 0.23 cfs @ 1.12 hrs, Volume= 0.010 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-144.00 hrs, dt= 0.01 hrs

Fixed water surface Elevation= 136.31'

Link POST POI: POST OUTFALL (POINT OF INVESTIGATION)

Stormwater Management Report

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ

APPENDIX D – GROUNDWATER RECHARGE SPREADSHEET

New Jersey Groundwater Recharge Spreadsheet Version 2.0 November 2003

Annual Groundwater Recharge Analysis (based on GSR-32)

Select Township ↓	Average Annual P (in)	Climatic Factor
GLOUCESTER CO., MONROE TWP	44.0	1.36

Project Name: Williamstown - Lidl

Proposed Grocery Store

Analysis Date: 11/30/20

Pre-Developed Conditions														
Land Segment	Area (acres)	TR-55 Land Cover	Annual Recharge (in)	Annual Recharge (cu.ft)										
1	2.21	Open space	Woodstown	10.2	81,654									
2	0.04	Impervious areas	Woodstown	0.0	-									
3	1.37	Woods	Woodstown	9.6	47,907									
4	0.23	Open space	Downer	13.0	10,853									
5	0.01	Impervious areas	Downer	0.0	-									
6	1.19	Woods	Downer	12.3	52,954									
7	0.49	Open space	Fallsington	0.0										
8	0.01	Impervious areas	Fallsington	0.0										
9	0													
10	0													
11	0													
12	0													
13	0													
14	0													
15	0													
Total =	5.6			Total Annual Recharge (in)	Total Annual Recharge (cu-ft)									
				9.6	193,368									

Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)
1	1.56	Open space	Woodstown	10.2	57,638
2	2.06	Impervious areas	Woodstown	0.0	•
3	0.85	Open space	Downer	13.0	40,109
4	0.58	Impervious areas	Downer	0.0	•
5	0.48	Open space	Fallsington	0.0	-
6	0.02	Impervious areas	Fallsington	0.0	-
7	0				
8	0				
9	0				
10	0				
11	0				
12	0				
13	0				
14	0				
15	0				
Total =	5.6			Total Annual Recharge (in)	Total Annual Recharge (cu.ft)
Annual	Recharg	ge Requirements Calculat	ion ↓	4.9	97,747
				Total	

Impervious

Area (sq.ft)

(cubic feet)

115,870

100%

95,621

Procedure to fill the Pre-Development and Post-Development Conditions Tables

For each land segment, first enter the area, then select TR-55 Land Cover, then select Soil. Start from the top of the table and proceed downward. Don't leave blank rows (with A=0) in between your segment entries. Rows with A=0 will not be displayed or used in calculations. For impervious areas outside of standard lots select "Impervious Areas" as the Land Cover. Soil type for impervious areas are only required if an infiltration facility will be built within these areas.

Recharge Efficiency Parameters Calculations (area averages)

% of Pre-Developed Annual Recharge to Preserve =

Post-Development Annual Recharge Deficit=

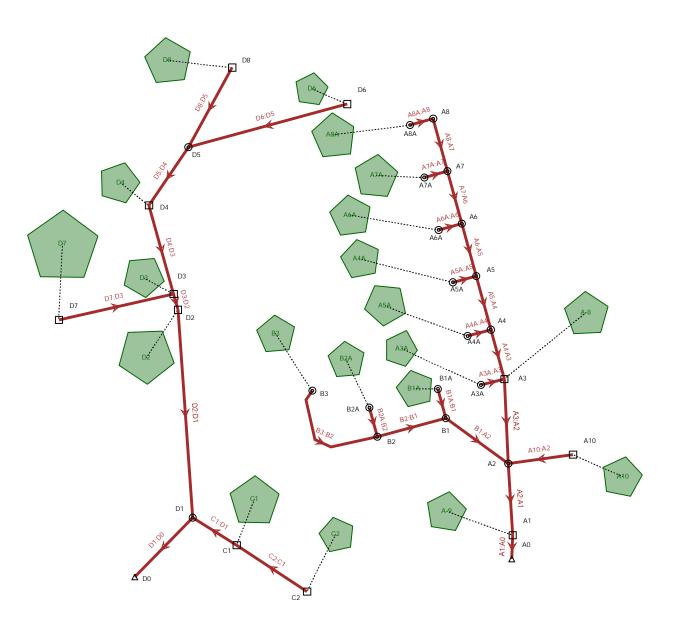
RWC= 2.76 (in) DRWC= 0.00 (in)

ERWC = 0.88 (in) EDRWC= 0.00 (in)

Project Name Description				Analysis	Date	BMP or L	BMP or LID Type						
Williamstown - Lid		Proposed	Grocery	Store	11/30/20		sin						
Recharge BMP Input Pa	rameters			Root Zone Water cap	acity Calcu	lated Paran	Recharge Design Parameters						
<u>Parameter</u>	Symbol	<u>Value</u>	<u>Unit</u>	<u>Parameter</u>	Symbol	<u>Value</u>	<u>Unit</u>	<u>Parameter</u>	Symbol	<u>Value</u>	<u>Unit</u>		
BMP Area	ABMP	21387.4	sq.ft	Empty Portion of RWC under Post-D Natural Recharge	ERWC	0.88	in	Inches of Runoff to capture	Qdesign	0.14	in		
BMP Effective Depth, this is the design variable	dBMP	0.8	in	ERWC Modified to consider dEXC	EDRWC	0.00	in	Inches of Rainfall to capture	Pdesign	0.21	in		
Jpper level of the BMP surface (negative if above ground)	dBMPu	36.6	in	Empty Portion of RWC under Infilt. BMP	RERWC	0.00	in	Recharge Provided Avg. over Imp. Area		9.9	in		
Depth of lower surface of BMP, must be>=dBMPu	dEXC	54.0	in					Runoff Captured Avg. over imp. Area		9.9	in		
Post-development Land Segment Location of BMP, Input Zero if Location is distributed or undetermined	SegBMP	0	unitless								_		
				BMP Calculated Size	Parameter	S		CALCULATION CHECK MESSAGES					
				ABMP/Aimp	Aratio			Volume Balance-> <mark>OK</mark>					
	I.D. I	***		BMP Volume	VBMP	1,378	cu.ft	dBMP Check> OK					
Parameters from Annua Post-D Deficit Recharge (or desired recharge volume)	Vdef	95,621	cu.ft	System Performance Annual BMP Recharge Volume	Calculated		cu.ft	dEXC Check> BMP Location>		selected as	distrik		
Post-D Impervious Area (or target Impervious Area)	Aimp	115,870	sq.ft	Avg BMP Recharge Efficiency		100.0%	Represents % Infiltration Recharged	OTHER NOTES					
Root Zone Water Capacity	RWC	2.76	in	%Rainfall became Runoff	77 6%			Pdesign is accurate only afte	Pdesign is accurate only after BMP dimensions are updated to make rech volume= deficit volume.				
RWC Modified to consider dEXC	DRWC	0.00	in	%Runoff Infiltrated		29.0%	%	of BMP infiltration prior to filli	ng and the area o	occupied by BN	∕IP are igi		
Climatic Factor C-factor 136 po units %F			%Runoff Recharged		29.0%	%	sensetive to dBMP, make sure dBMP selected is small enough for BMP to empty in less than 3 days. F						
Average Annual P	Pavg	44.0	in	%Rainfall Recharged		22.5%	%	Segment Location of BMP if	you select "imper	vious areas" R	WC will b		
Recharge Requirement over Imp. Area	dr	9.9	in	adsheet assigns the value				the soil type and a shallow ro			_		

How to solve for different recharge volumes: By default the spreadsheet assigns the values of total deficit recharge volume "Vdef" and total proposed impervious area "Aimp" from the "Annual Recharge" sheet to "Vdef" and "Aimp" on this page. This allows solution for a single BMP to handle the entire recharge requirement assuming the runoff from entire impervious area is available to the BMP.

To solve for a smaller BMP or a LID-IMP to recharge only part of the recharge requirement, set Vdef to your target value and Aimp to impervious area directly connected to your infiltration facility and then solve for ABMP or


dBMP. To go back to the default configuration clik the "Default Vdef & Aimp" button.

Stormwater Management Report

Proposed Lidl Grocery Store - Monroe Township, Gloucester County, NJ

APPENDIX E – PROPOSED STORMWATER CONVEYANCE CALCULATIONS

Conduit FlexTable: Hydraulic Report

Nodo Ilmatrons	Natas	Diameter	Longeth	Moneinels	Clans	Invent	Invest						Custom	<u> </u>	Conceitu	Volositu	Course	Cover	Unotroom	Lludraulia	Crown
-Node- Upstream Downstream	Notes	Diameter (in)	Length (Unified) (ft)	Manning's n	Slope (Calculated) (ft/ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Upstre am Inlet C	Upstream Inlet Area (acres)	System CA (acres)	System Flow Time (min)	System Intensity (in/h)	System Rational Flow (cfs)	Flow (cfs)	Capacity (Design) (cfs)	Velocity (ft/s)	Cover (Start) (ft)	Cover (Stop) (ft)	Upstream Structure Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (In) (ft)	-Ground- Upstream Downstream (ft)
D7	15" RCP	15.0	99.3	0.013	0.005	138.73	138.23	0.770	0.160	0.123	5.000	7.700	0.96	0.96	4.57	2.94	3.38	3.70	139.42	139.42	143.36
D3 D8 D5	15" RCP	15.0	72.0	0.013	0.005	139.37	139.01	0.300	1.110	0.333	15.000	5.700	1.91	1.91	4.57	3.56	3.38	4.89	139.97	139.94	143.19 144.00 145.16
D6 D5	15" RCP	15.0	137.7	0.013	0.005	139.80	139.11	0.900	0.040	0.036	5.000	7.700	0.28	0.28	4.57	2.06	0.89	4.79	140.01	140.01	141.94 145.16
D5 D4	15" RCP	15.0	59.4	0.013	0.005	139.01	138.72	(N/A)	(N/A)	0.369	15.337	5.636	2.10	2.10	4.57	3.64	4.89	4.57	139.66	139.61	145.16 144.54
D4 D3	15" RCP	15.0	76.6	0.013	0.005	138.62	138.23	0.860	0.140	0.489	15.609	5.584	2.75	2.75	4.57	3.89	4.67	3.70	139.50	139.50	144.54 143.19
D3 D2	24" RCP	24.0	12.1	0.013	0.005	137.48	137.42	0.870	0.400	0.961	15.937	5.521	5.35	5.35	15.95	4.57	3.70	3.76	139.41	139.41	143.19 143.18
D2 D1	24" RCP	24.0	175.0	0.013	0.005	137.32	136.45	0.830	0.320	1.226	15.981	5.513	6.81	6.81	16.00	2.17	3.86	5.09	139.41	139.41	143.18 143.54
C2 C1	15" RCP	15.0	74.8	0.013	0.005	137.78	137.41	0.840	0.250	0.210	5.000	7.700	1.63	1.63	4.57	1.33	3.47	5.21	139.36	139.36	142.50 143.87
C1 D1	15" RCP	15.0	41.4	0.013	0.005	137.31	137.10	0.880	0.130	0.324	5.938	7.513	2.46	2.46	4.57	2.00	5.31	5.19	139.31	139.31	143.87 143.54
D1 D0	24" RCP	24.0	69.6	0.013	0.005	136.35	136.00	(N/A)	(N/A)	1.551	17.326	5.256	8.22	8.22	16.00	2.62	5.19	1.17	139.25	139.20	143.54 139.17
A10 A2	18" RCP	18.0	55.9	0.013	0.005	139.24	138.96	0.300	6.140	1.842	18.000	5.128	9.52	9.52	7.42	5.39	2.25	3.45	140.81	140.73	142.98 143.91
A3A A3	12" RCP	12.0	20.1	0.013	0.097	141.00	139.05	0.900	0.070	0.063	5.000	7.700	0.49	0.49	11.08	7.07	4.00	2.61	141.31	141.29	146.00 142.66
A4A A4	12" PVC	12.0	20.1	0.013	0.041	141.00	140.17	0.900	0.130	0.117	5.000	7.700	0.91	0.91	7.25	6.29	4.00	1.84	141.42	141.40	146.00 143.01
A5A A5	12" PVC	12.0	20.1	0.013	0.030	141.00	140.40	0.900	0.120	0.108	5.000	7.700	0.84	0.84	6.15	5.48	4.00	1.93	141.41	141.38	146.00 143.33
A6A A6	12" PVC	12.0	20.1	0.013	0.018	141.00	140.63	0.900	0.120	0.108	5.000	7.700	0.84	0.84	4.85	4.62	4.00	1.94	141.41	141.38	146.00 143.57
A7A A7	12" PVC	12.0	20.1	0.013	0.007	141.00	140.86	0.900	0.120	0.108	5.000	7.700	0.84	0.84	3.01	3.28	4.00	1.97	141.41	141.38	146.00 143.83
A8A A8	12" PVC	12.0	20.1	0.013	0.008	141.00	140.83	0.900	0.080	0.072	5.000	7.700	0.56	0.56	3.25	3.09	4.00	2.23	141.33	141.31	146.00 144.06
A8 A7	15" RCP	15.0	45.5	0.013	0.005	140.83	140.61	(N/A)	(N/A)	0.072	5.108	7.678	0.56	0.56	4.56	2.52	1.98	1.97	141.24	141.21	144.06 143.83
A7 A6	15" RCP	15.0	45.5	0.013	0.005	140.61	140.38	(N/A)	(N/A)	0.180	5.409	7.618	1.38	1.38	4.57	3.26	1.97	1.94	141.20	141.09	143.83 143.57
A6 A5	15" RCP	15.0	45.5	0.013	0.005	140.38	140.15	(N/A)	(N/A)	0.288	5.641	7.572	2.20	2.20	4.56	3.69	1.94	1.93	141.06	140.99	143.57 143.33
A5 A4	18" RCP	18.0	46.6	0.013	0.005	139.90	139.67	(N/A)	(N/A)	0.396	5.847	7.531	3.01	3.01	7.43	3.98	1.93	1.84	140.73	140.58	143.33 143.01
A4 A3	18" RCP	18.0	42.8	0.013	0.005	139.67	139.45	(N/A)	(N/A)	0.513	6.042	7.492	3.87	3.87	7.43	4.25	1.84	1.71	140.55	140.44	143.01 142.66
A3 A2	24" RCP	24.0	79.1	0.013	0.005	138.95	138.56	0.350	0.530	0.762	6.210	7.459	5.73	5.73	15.99	4.67	1.71	3.35	140.08	139.88	142.66 143.91
B3 B2	4" PVC	4.0	103.1	0.013	0.007	142.00	141.23	0.900	0.014	0.013	5.000	7.700	0.10	0.10	0.16	1.97	3.48	3.74	142.19	142.19	145.82 145.30
B2A B2	12" RCP	6.0	36.2	0.013	0.010	142.00	141.64	0.900	0.018	0.016	5.000	7.700	0.12	0.12	0.56	2.30	3.41	3.16	142.19	142.18	145.91 145.30
B2 B1	6" PVC	6.0	59.4	0.013	0.007	141.06	140.62	(N/A)	(N/A)	0.029	5.872	7.526	0.22	0.22	0.49	2.40	3.74	4.12	141.35	141.30	145.30 145.24

Conduit FlexTable: Hydraulic Report

-Node- Upstream Downstream	Notes	Diameter (in)	Length (Unified) (ft)	Manning's n	Slope (Calculated) (ft/ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Upstre am Inlet C	Upstream Inlet Area (acres)	System CA (acres)	System Flow Time (min)	System Intensity (in/h)	System Rational Flow (cfs)	Flow (cfs)	Capacity (Design) (cfs)	Velocity (ft/s)	Cover (Start) (ft)	Cover (Stop) (ft)	Upstream Structure Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (In) (ft)	-Ground- Upstream Downstream (ft)
B1A	6" PVC	6.0	36.2	0.013	0.015	141.00	140.46	0.900	0.006	0.005	5.000	7.700	0.04	0.04	0.69	1.90	4.41	4.28	141.10	141.10	145.91
B1	15 II DOD	15.0	(1.0	0.010	0.005	120 52	120.01	(01/0)	(01/0)	0.004	(204	7 444	0.05	0.05	4.57	2.00	4 47	2.45	140.70	120.00	145.24
Δ2	15" RCP	15.0	61.9	0.013	0.005	139.52	139.21	(N/A)	(N/A)	0.034	6.284	7.444	0.25	0.25	4.56	2.00	4.47	3.45	140.70	139.88	145.24 143.91
A2	24" RCP	24.0	52.4	0.013	0.005	138.46	138.20	(N/A)	(N/A)	2.637	18.173	5.095	13.54	13.54	16.00	5.71	3.45	2.18	139.88	139.88	143.91
A1																					142.38
A1	24" RCP	24.0	19.4	0.013	0.005	138.10	138.00	0.900	0.340	2.943	18.326	5.066	15.03	15.03	15.97	5.78	2.28	-0.83	139.64	139.64	142.38
A0																					139.17